自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(75)
  • 收藏
  • 关注

原创 毕业项目推荐:43-基于yolov8/yolov5/yolo11的暴力行为检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-03-04 12:04:04 1407

原创 毕业项目推荐:38-基于yolov8/yolov5/yolo11的吸烟行为检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-28 20:04:57 1412

原创 毕业项目推荐:基于yolov8/yolo11的植物类别检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-28 19:42:29 1778

原创 毕业项目推荐:36-基于yolov8/yolov5/yolo11的智能零售柜商品检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-27 18:02:46 1718

原创 毕业项目推荐:56-基于yolov8/yolov5/yolo11的X光安检危险物品检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-27 15:00:36 1441

原创 毕业项目推荐:53-基于yolov8/yolov5/yolo11的野生菌菇检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-26 15:24:03 2403 2

原创 毕业项目推荐:61-基于yolov8/yolov5/yolo11的柑橘病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-26 14:35:37 1851

原创 毕业项目推荐:09-基于yolov8/yolov5/yolo11的车型检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-25 14:56:12 1438

原创 毕业项目推荐:15-基于yolov8/yolov5/yolo11的苹果病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-25 10:20:16 1741

原创 毕业项目推荐:24-基于yolov8/yolov5/yolo11的番茄成熟度检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-21 16:48:54 2299

原创 毕业项目推荐:17-基于yolov8/yolov5/yolo11的水稻病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-21 16:13:49 1552

原创 毕业项目推荐:42-基于yolov8/yolov5/yolo11的非机动车头盔佩戴检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-21 12:43:55 2241

原创 毕业项目推荐:基于yolov8/yolo11的100种中药材检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-20 18:41:34 1607

原创 毕业项目推荐:11-基于yolov8/yolov5/yolo11的果蔬检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-20 14:03:03 1622 1

原创 毕业项目推荐:62-基于yolov8/yolov5/yolo11的海洋垃圾检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-20 12:51:33 1578

原创 毕业项目推荐:19-基于yolov8/yolov5/yolo11的玉米病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-19 20:33:46 1477

原创 毕业项目推荐:41-基于yolov8/yolov5/yolo11的小麦病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-02-17 20:18:36 1686

原创 毕业项目推荐:07-基于yolov8/yolov5/yolo11的安全帽检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-14 15:44:30 1436

原创 毕业项目推荐:06-基于yolov8/yolov5/yolo11的火灾检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-13 18:34:24 1787

原创 毕业项目推荐:16-基于yolov8/yolov5/yolo11的道路缺陷检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-02-13 18:32:35 1897

原创 毕业项目推荐:48-基于yolov8/yolov5/yolo11的水果检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-01-10 16:59:41 2078 1

原创 毕业项目推荐:05-基于yolov8/yolov5/yolo11的动物检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制或yolo11yolo11 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。

2025-01-07 11:50:34 3587 2

原创 毕业项目推荐:39-基于yolov8/yolov5/yolov11的行人摔倒检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-01-06 09:47:31 1282

原创 毕业项目推荐:63-基于yolov8/yolov5/yolo11的草莓病害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-01-04 13:53:51 1892 1

原创 毕业项目推荐:25-基于yolov8/yolov5/yolo11的行人检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-01-04 13:24:57 3861 2

原创 毕业项目推荐:14-基于yolov8/yolov5/yolov11的交通标志检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-01-03 10:01:04 2262

原创 毕业项目推荐:49-基于yolov8/yolov5/yolov11的课堂行为检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2025-01-02 19:04:22 3927 1

原创 毕业项目推荐:57-基于yolov8/yolov5/yolo11的农作物虫害检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-12-26 19:12:02 2229

原创 毕业项目推荐:62-基于yolov8/yolov5/yolo11的海洋垃圾检测识别系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-12-26 19:11:01 1518

原创 毕业项目推荐:08-基于yolov8/yolov5/yolo11的垃圾检测与分类系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-12-25 19:29:49 2556

原创 毕业项目推荐:基于深度学习的茶叶等级检测系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-11-29 16:56:42 1627

原创 毕业项目推荐:10-基于yolov8/yolov5/yolo11的PCB板缺陷检测系统(python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-11-28 18:35:50 3331 1

原创 毕业项目:12-基于yolov8/yolov5/yolo11的人脸表情检测识别系统(Python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。Backbone。

2024-10-11 12:29:12 10254 2

原创 毕业项目推荐:03-基于yolov8/yolov5/yolo11的钢铁缺陷检测识别系统(Python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制或yolov5yolov5 + SE注意力机制数据集:网上下载的数据集,格式都已转好,可直接使用。以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点。全新SOTA模型YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640和P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X。

2024-10-10 13:11:17 3215

原创 毕业项目推荐:基于yolov8的车牌识别检测系统(Python+卷积神经网络)

项目中所用到的算法模型和数据集等信息如下:算法模型:yolov8yolov8 + SE注意力机制车牌OCR识别模型:LPRNet数据集:CCPD2019、CCPD2020数据集以上是本套代码算法的简单说明,添加注意力机制可作为bishe、作业的创新点。CCPD是一个经过精细标注的大型、多样化的中国城市车牌开源数据集,主要包括CCPD2019和CCPD2020(又称CCPD-Green)两个子数据集。

2024-10-08 17:46:30 5386 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除