详解树、二叉树和堆

本文介绍了树和二叉树的基本概念,包括结点的度、叶结点、分支结点、双亲结点等,并详细阐述了二叉树的特性,如满二叉树和完全二叉树的定义。此外,文章还讨论了树的存储结构,特别是二叉树的顺序存储和链式存储,并以堆为例展示了如何用数组实现堆的创建、调整和操作。堆排序作为堆的一个重要应用也在文中提及。
摘要由CSDN通过智能技术生成

一、树

1、树的概念及结构

1.1树的概念

树(Tree)是n(n=0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:

(1)有且仅有一个特定的称为根(Root)的结点;

(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T、T2、…...、Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree),如下图所示。

对于树的定义还需要强调两点:

1.n>0时根结点是唯一的,不可能存在多个根起,现实中的树有很多根须,别和现实中的大数混在一起,现实中的树有很多根须,那是真实的树,数据结构中的树是只能有一个根结点。

2.m>0时,子树的个数没有限制,但它们一定是互不相交的。像下图三个个结构就不符合树的定义,因为它们都有相交的子树。

1.2树的相关概念

结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了, 既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
typedef int DataType;
struct Node
{
    struct Node* firstChild1;    // 第一个孩子结点
    struct Node* pNextBrother;   // 指向其下一个兄弟结点
    DataType data;               // 结点中的数据域
};

1.4 树在实际中的运用(表示文件系统的目录树结构)

二、二叉树

2.二叉树的概念及结构

2.1二叉树的概念

二叉树(Binary Tree)是n(n=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

2.2二叉树的特点

二叉树的特点有:

每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点,注意不是只有两棵子树,而是最多有。没有子树或者有一棵子树都是可以的。

于左子树和右子树是有顺序的,次序不能任意颠倒。就像人是双手、双脚,但显然左手、左脚和右手、右脚是不一样的,右手戴左手套、右脚穿左鞋都会极其别扭和难受。即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。下图中,树1和树2是同一棵树,但它们却是不同的二叉树。就好像你一不小心,摔伤了手,伤的是左手还是右手,对你的生活影响度是完全不同的。

上图是二叉树的五种基本形态。

2.3特殊的二叉树

2.3.1 斜树

所有的结点都只有左子树的二叉树叫做左斜树。反之即为右子树,这两者统称为斜树。‘

2.3.2满二叉树

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k -1 ,则它就是满二叉树。如上图所示。

满二叉树的特点:

(1)叶子只能出现在最下一层,出现在其他层就不可能达成平衡。

(2)非叶子的结点的度一定是2。否则就是“缺胳膊少腿”。

(3)在同样深度的二叉树中,满二叉树的结点个数最大,叶子数最多。

2.3.3完全二叉树

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。如上图所示。

完全二叉树的特点:

(1):叶子结点只能出现在最下两层。

(2):最下层的叶子一定集中在左部连续位置。

(3):倒数二层,若有叶子结点,一定都在右部连续位置。

(4):如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况。

(5):同样结点的二叉树,完全二叉树的深度最小。

2.4 二叉树的性质

若规定根结点的层数为1,则一棵非空二叉树的 第i层上最多有【2^{(i-1)】 个结点(i>=1)。
若规定根结点的层数为1,则 深度为h的二叉树的最大结点数是【2^h-1】.
对任何一棵二叉树, 如果度为0其叶结点个数为【n_0】, 度为2的分支结点个数为【n_2】,则有 【n_0】=【n_2】+1
若规定根结点的层数为1,具有 n个结点的满二叉树的深度h=[log_2(n+1)].
(ps:【log_2(n+1)】是log以2为底,n+1为对数.[x]表示不大于x的最大整数)。)
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:
若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用 数组来存储,一般使用数组 只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的博客会专门讲解。 二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。

二叉树的代码结构定义

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* left;   // 指向当前结点左孩子
    struct BinTreeNode* right;  // 指向当前结点右孩子
    BTDataType data;            // 当前结点值域
}

// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* parent; // 指向当前结点的双亲
    struct BinTreeNode* left;   // 指向当前结点左孩子
    struct BinTreeNode* right;  // 指向当前结点右孩子
    BTDataType data;            // 当前结点值域
};

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。 现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2 堆的概念及结构

如果有一个关键码的集合K = {$k_0$,$k_1$, $k_2$,…,$k {n-1}$},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:$K_i$ <= $K{2 i+1}$ 且 $K_i$<= $K_{2i+2}$ ($K_i$ >= $K {2*i+1}$ 且 $K_i$ >= $K{2*i+2}$) i = 0,1,2…,则称为小堆(或大堆)。将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个结点的值总是不大于或不小于其父结点的值;
堆总是一棵完全二叉树。

3.2.1 堆向下调整算法
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整
int array[] = {27,15,19,18,28,34,65,49,25,37};
1.向下算法实现
//左右子树都是小堆,若是改大堆的话把下面两个小于号改成大于号
void AdjustDown(HPDataType* a, int n, int parent)
{
    int child = parent * 2 + 1;
    while (child < n)
    {
        //选出左右孩子中大的那一个
        if (child + 1 < n && a[child + 1] > a[child])
        {
            ++child;
        }
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = parent * 2 + 1;
        }
        else
        {
            break;
        }
    }
}
3.2.2堆的创建
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。
int a[] = {1,5,3,8,7,6}; 
void HeapCreat(int* a, int n)//数组指针和结点总个数
{
    //建堆 -- 向下调整建堆
    for (int i = (n - 1 - 1) / 2; i >= 0; i--)//(n-1)代表结点数,((n-1)-1)/ 2)是求父节点
    {
        AdjustDown(a, n, i);
    }
}
3.2.3 建堆时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个结点不影响最终结果):

因此: 建堆的时间复杂度为O(N)
因此建堆的时间复杂度为O(N);
3.2.4 堆的插入
先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
2.向上调整算法的实现
void AdjustUp(HPDataType* a, int child)
{
    int parent = (child - 1) / 2;
    //while(parent>=0) //因为到0时,一直为0.
    while (child > 0)
    {
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            child = parent;
            parent = (child - 1) / 2;
        }
        else
        {
            break;
        }
    }
}
3.2.5 堆的删除
删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
3.2.6 堆的基本操作
typedef int HPDataType;
typedef struct Heap
{
    HPDataType* _a;
    int _size;
    int _capacity; 
}Heap;

// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);
3.3 堆的应用
3.3.1 堆排序
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
建堆
升序:建大堆
降序:建小堆
利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

3.4堆的代码实现

Heap.h头文件

#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
#include<time.h>

typedef int HPDataType;
typedef struct Heap
{
    HPDataType* a;
    int size;
    int capacity;
}HP;
//初始化二叉树
void HeapInit(HP* php);
//插入元素
void HeapPush(HP* php,HPDataType x);
//删除元素
void HeapPop(HP* php);
//返回根结点元素
HPDataType HeapTop(HP* php);
//判断树是否为空
bool HeapEmpty(HP* php);
//返回二叉树的结点数
int HeapSize(HP* php);
//交换数组元素
void Swap(HPDataType* p1, HPDataType* p2);
//向上调整函数
void AdjustUp(HPDataType* a, int child);
//向下调整函数
void AdjustDown(HPDataType* a, int n, int parent);
//堆排序
void HeapSort(int* a, int n);

Heap.cpp函数实现

#include"Heap.h"
//初始化二叉树
void HeapInit(HP* php)
{
    php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);
    if (php->a == NULL)
    {
        perror("malloc fail");
        return;
    }
    php->size = 0;
    php->capacity = 4;
}

void Swap(HPDataType* p1, HPDataType* p2)
{
    HPDataType tmp = *p1;
    *p1 = *p2;
    *p2 = tmp;
}
//插入元素
void HeapPush(HP* php,HPDataType x)
{
    assert(php);

    if (php->size == php->capacity)
    {
        HPDataType* tmp = (HPDataType*)realloc(php->a,sizeof(HPDataType)*php->capacity*2);
        if (tmp == NULL)
        {
            perror("realloc fail");
            return;
        }
        php->a = tmp;
        php->capacity *= 2;
    }
    php->a[php->size] = x;
    php->size++;

    AdjustUp(php->a, php->size - 1);
}
//删除元素
void HeapPop(HP* php)
{
    assert(php);
    assert(!HeapEmpty(php));
    
    //删除数据
    Swap(&php->a[0], &php->a[php->size - 1]);
    php->size--;

    AdjustDown(php->a, php->size, 0);
}
//返回根结点元素
HPDataType HeapTop(HP* php)
{
    assert(php);
    return php->a[0];
}
//判断是否为空,注意要加!来判断如assert(!HeapEmpty);
bool HeapEmpty(HP* php)
{
    assert(php);
    return php->size == 0;
}
//返回二叉树个数
int HeapSize(HP* php)
{
    assert(php);
    return php->size;
}
//向上调整
void AdjustUp(HPDataType* a, int child)
{
    int parent = (child - 1) / 2;
    //while(parent>=0) //因为到0时,一直为0.
    while (child > 0)
    {
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            child = parent;
            parent = (child - 1) / 2;
        }
        else
        {
            break;
        }
    }
}
//左右子树都是大堆/小堆
void AdjustDown(HPDataType* a, int n, int parent)
{
    int child = parent * 2 + 1;
    while (child < n)
    {
        //选出左右孩子中大的那一个
        if (child + 1 < n && a[child + 1] > a[child])//大于号建小堆,小于号建大堆
        {
            ++child;
        }
        if (a[child] > a[parent])//大于号建小堆,小于号建大堆
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = parent * 2 + 1;
        }
        else
        {
            break;
        }
    }
}

//排升序 -- 建大堆
void HeapSort(int* a, int n)
{
    // 建堆 -- 向上调整建堆
    /*for (int i = 1; i < n; ++i)
    {
        AdjustUp(a, i);
    }*/
    //建堆 -- 向下调整建堆
    for (int i = (n - 1 - 1) / 2; i >= 0; i--)//(n-1)代表结点数,((n-1)-1)/ 2)是求父节点
    {
        AdjustDown(a, n, i);
    }

    // 排序 -- 大堆排升序/小堆排降序
    int end = n - 1;
    while (end > 0)
    {
        Swap(&a[end], &a[0]);
        AdjustDown(a, end, 0);
        --end;
    }
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值