[第一章]变量输入与输出

本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。

💓博主csdn个人主页:小小unicorn
⏩专栏分类:acwing语法基础
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

1.A+B

来源:A+B

题目描述:
在这里插入图片描述
这个题比较简单,注意变量开longlong即可

代码解决:

#include<iostream>
using namespace std;

int main()
{
    long long a,b;
    cin>>a>>b;
    cout<<a+b;
    return 0;
}

运行结果:
在这里插入图片描述

2.差

题目来源:
题目描述:

在这里插入图片描述
这个题比较简单,直接打印结果即可。

代码解决:

#include<iostream>
using namespace std;
int main()
{
    long long a,b,c,d;
    cin>>a>>b>>c>>d;
    cout<<"DIFERENCA = "<<(a*b-c*d);
    return 0;
}

3.圆的面积

来源:圆的面积
题目描述:
在这里插入图片描述
这个题目我们要注意一下最后输出的结果保留的是四位数,我们使用printf函数来控制打印输出。

#include<iostream>
using namespace std;
#define PI 3.14159

int main()
{
    double R,A;
    cin>>R;
    A=PI*R*R;
    printf("A=%.4lf", A);
    return 0;
}

运行结果:
在这里插入图片描述

4.平均数1

来源:平均数1
题目描述:
在这里插入图片描述
这道题主要要理解加权二字:
这里的权重就是指的加权平均里的权,平均不仅仅只有五五开 的,也有任意开的,这就是3.5,7.5开的
最后除的不是2而是3.5+7.5的结果

代码解决:

#include<iostream>
using namespace std;

int main()
{
    double a,b,x;
    cin>>a>>b;
    x=(a*3.5+b*7.5 )/11;//11=3.5+7.5
    printf("MEDIA = %.5lf",x);
    return 0;
}

结果:
在这里插入图片描述

5.工资

来源:工资
题目描述:
在这里插入图片描述
本题还是标准的输出输入,按照要求进行撰写代码即可。

代码解决:

#include<iostream>
using namespace std;

int main()
{
    long long  number,time;//员工编号,工作时间
    double Hourlywages;//时薪
    cin>>number>>time>>Hourlywages;
    double money=Hourlywages*time;
    cout<<"NUMBER = "<<number<<endl;
    printf("SALARY = U$ %.2lf",money);
    return 0;
}

结果显示:
在这里插入图片描述

6.油耗

来源:油耗
题目描述:
在这里插入图片描述
代码解决:

#include<iostream>
using namespace std;

int main()
{
    int journey;//路程
    double Fuelconsumption;//耗油量
    cin>>journey>>Fuelconsumption;
    printf("%.3lf km/l",journey / Fuelconsumption);
    return 0;
}

结果显示:
在这里插入图片描述

7.两点间的距离

来源:两点间的距离
题目描述:

在这里插入图片描述
这里我们可以直接输出结果,直接计算。

这里我们用到了两个数学里面的库函数sqrt和pow函数:

pow函数用于计算一个数的幂。其基本语法如下:

double pow(double base, double exponent);

参数

  • base:底数(类型为double)。
  • exponent:指数(类型为double)。

返回值

  • 返回baseexponent次幂(base^exponent)。
    示例:
#include <iostream>
#include <cmath>

int main() 
{
    double result = pow(2.0, 3.0); // 2的3次方
    std::cout << "2^3 = " << result << std::endl; // 输出: 2^3 = 8
    return 0;
}

sqrt 函数

sqrt函数用于计算一个数的平方根。其基本语法如下:

double sqrt(double x);
  • 参数
    • x:非负数(类型为double),其平方根将被计算。
  • 返回值
    • 返回x的平方根,如果x为负数,则返回NaN(不是一个数字)。

示例:

include <iostream>
#include <cmath>

int main() 
{
    double result = sqrt(16.0); // 16的平方根
    std::cout << "sqrt(16) = " << result << std::endl; // 输出: sqrt(16) = 4
    return 0;
}

注意事项

  • 使用这两个函数时,确保包含头文件<cmath>
  • 计算结果可能会受到精度的影响,特别是在使用浮点数时。
  • pow函数的指数为负数时,结果为1除以底数的正幂。
  • 对于负数,sqrt会返回NaN,在实际应用中需要做适当的错误处理。

代码解决:

#include<iostream>
#include<cmath>
using namespace std;

int main()
{
    double x1,y1;
    double x2,y2;
    cin>>x1>>y1>>x2>>y2;
    printf("%.4lf",sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)));
    //printf("%.4lf\n ", sqrt ( ( x1 - x2) * ( x1 - x2 ) + ( y1 - y2 ) * ( y1 - y2 ) ) );
}

8.钞票(1)

来源:钞票

题目描述:
在这里插入图片描述
在这里插入图片描述
代码解决:

#include<iostream>
using namespace std;

int main()
{
    int money, a[7] = {100, 50, 20, 10, 5, 2, 1};
    cin >> money;
    cout<<money<<endl;
    for (int i = 0; i < 7; i ++ )
    {
        printf("%d nota(s) de R$ %d,00\n", money / a[i], a[i]);
        money %= a[i];
    }
    return 0;
}

9.时间转换(2)

来源:时间转换
题目描述:
在这里插入图片描述
代码解决:

#include <iostream>

using namespace std;

int main()
{
    int t;
    cin >> t;
    int h = t / 3600;
    int m = t % 3600 / 60;
    int s = t % 60;
    cout << h << ':' << m << ':' << s << endl;
    return 0;
}

详细说明

  1. 输入:用户输入一个整数t,表示总秒数。
  2. 计算小时:使用整数除法/将总秒数t转换为小时,t / 3600
  3. 计算分钟:使用取模运算%先求出剩余的秒数(t % 3600),再将其转换为分钟,(t % 3600) / 60
  4. 计算秒:直接对t取模,t % 60得到剩余的秒数。
  5. 输出:使用cout输出格式为h:m:s

示例:

假设输入3661,程序将输出1:1:1,表示1小时1分钟1秒。

改进

你可以考虑添加输入验证,以确保输入的秒数是非负的,或者在输出时格式化为两位数(例如,01:01:01),使输出更加美观。下面是一个改进的版本:

#include <iostream>
#include <iomanip> // 用于 std::setw 和 std::setfill
using namespace std;
int main()
{
    int t;
    cin >> t;
    // 输入验证
    if (t < 0) 
    {
        cout << "请输入一个非负整数!" << endl;
        return 1;
    }
    int h = t / 3600;
    int m = (t % 3600) / 60;
    int s = t % 60;

    // 使用setw和setfill格式化输出
    cout << setw(2) << setfill('0') << h << ':'
         << setw(2) << setfill('0') << m << ':'
         << setw(2) << setfill('0') << s << endl;
    return 0;
}

这样可以保证输出的小时、分钟和秒都是两位数,格式更加整齐。
结果显示:
在这里插入图片描述

10.简单乘积(带你用11种解法进行解决)

来源:简单乘积

题目描述:
在这里插入图片描述
代码解决:

直接做:

#include<iostream>

using namespace std;

int main()
{
    int a, b;
    cin >> a >> b;
    cout << "PROD = " << a * b << endl;
    return 0;
}

用二分处理,先把负数转换,然后二分

#include<iostream>

using namespace std;

int f = 0;//数的状态(0,-..,...)

int main()
{
    int a, b;
    cin >> a >> b;

    if(a == 0 || b == 0) f = 2;//处理状态
    else if(a < 0 && b >= 0 || b < 0 && a >= 0)
    {
        f = 1;
        if(a < 0) a = a * -1;
        else b = b * -1;
    }

    int l = -100000000, r = 100000000;
    while(r - l >= 1)
    {
        int mid = (l + r) / 2;//二分
        if(mid >= a * b) r = mid;
        else l = mid + 1;
    }

    if(f == 2) 
    {
        cout <<"PROD = "  << l;
    }
    else if(f == 0)
    {
        cout <<"PROD = "  << l;
    }
    else cout << "PROD = -" << l;
}

高精度算法

#include <iostream>
#include <vector>

using namespace std;

vector<int> f(vector<int> &a, int b)//处理函数
{
    vector<int> c;//定义结果
    int x = 0;
    for (int i = 0; i < a.size() || x; i ++ )//一位一位运算
    {
        if (i < a.size()) x += a[i] * b;//每次把a【i】乘b
        c.push_back(x % 10);
        x = x / 10;
    }
    while (c.size() > 1 && c.back() == 0) c.pop_back();

    return c;
}


int main()
{
    string a;
    int b;
    cin >> a >> b;
    vector<int> a2;
    for (int i = a.size() - 1; i >= 0; i -- ) a2.push_back(a[i] - '0');
    auto c = f(a2, b);
    for (int i = c.size() - 1; i >= 0; i -- ) printf("%d", c[i]);

    return 0;
}

位运算

#include <stdio.h>

int add(int a, int b)
{
    while (b)
    {
        int x = a ^ b;
        int y = (a & b) << 1;
        a = x;
        b = y;
    }
    return a;
}

int main()
{
    int a, b;
    int res = 0;
    cin>>a>>b;
    if (b < 0)
    {
        a = add(~a, 1);
        b = add(~b, 1);
    }
    while (b)
    {
        if (b & 1) res = add(res, a);
        a <<= 1;
        b >>= 1;
    }
    printf("PROD = %d", res);
    return 0;
}

SPFA解法:

SPFA(Shortest Path Faster Algorithm)是一种用于求解带权图中单源最短路径的算法,尤其适合于稀疏图。它是Bellman-Ford算法的优化版本,利用队列来实现更高效的松弛操作。以下是SPFA算法的基本思想、步骤和C++实现。

算法基本思想

  1. 初始化:将源点到自身的距离设置为0,其他点的距离设置为无穷大(或一个较大的数)。
  2. 使用队列:将源点加入队列。
  3. 松弛操作:从队列中取出一个顶点,检查它的邻接边。如果通过该顶点到达邻接点的距离比当前已知距离小,则更新距离,并将该邻接点加入队列(如果它还不在队列中)。
  4. 重复:继续处理队列中的顶点,直到队列为空。
#include <stdio.h>
#include <string.h>

const int N = 10010;

int e[N], ne[N], w[N], h[N], idx;
int dist[N];
bool state[N];
int q[N];
int hh, tt;

void add(int a, int b, int c)
{
    e[ ++ idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}

int spfa(int end)
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    state[1] = true;
    q[0] = 1;
    while (hh <= tt)
    {
        int t = q[hh ++ ];
        state[t] = false;
        for (int i = h[t]; i; i = ne[i])
            if (dist[e[i]] > dist[t] + w[i])
            {
                dist[e[i]] = dist[t] + w[i];
                if (!state[e[i]])
                {
                    state[e[i]] = true;
                    q[ ++ tt] = e[i];
                }
            }
    }
    return dist[end];
}

int main()
{
    int a, n;
    scanf("%d %d", &a, &n);
    if(n < 0) a = -a, n = -n;
    n ++ ;
    for (int i = 1; i < n; i ++ )
        add(i, i + 1, a);
    printf("PROD = %d", spfa(n));
    return 0;
}

本代码实现了一个使用SPFA算法来计算从节点1到节点n的最短路径的程序。这个程序特别之处在于它通过边的权重进行动态的图构建。以下是代码的详细解释和一些建议。

代码解释

  1. 数据结构
  • e[N]:邻接表中的边的目标节点。
  • ne[N]:邻接表中的下一个边的索引。
  • w[N]:边的权重。
  • h[N]:每个节点的邻接链表的头部。
  • dist[N]:存储从源节点到各个节点的最短距离。
  • state[N]:标记节点是否在队列中。
  • q[N]:用于实现队列的数组,存储当前待处理的节点。
  1. add 函数

这个函数用于向图中添加一条边。它将边的目标节点、权重和链表结构进行适当的更新。

void add(int a, int b, int c)
{
    e[++idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}
  1. spfa 函数

该函数实现了SPFA算法,计算从节点1到指定目标节点的最短距离。

int spfa(int end)
{
    memset(dist, 0x3f, sizeof dist); // 初始化距离为无穷大
    dist[1] = 0; // 源节点到自身的距离为0
    state[1] = true; // 标记源节点在队列中
    q[0] = 1; // 将源节点入队
    hh = 0; // 队头
    tt = 0; // 队尾
    
    while (hh <= tt)
    {
        int t = q[hh++]; // 取出队头元素
        state[t] = false; // 标记为不在队列中
        
        for (int i = h[t]; i; i = ne[i]) // 遍历邻接边
            if (dist[e[i]] > dist[t] + w[i]) // 松弛操作
            {
                dist[e[i]] = dist[t] + w[i];
                if (!state[e[i]]) // 如果不在队列中
                {
                    state[e[i]] = true; // 标记为在队列中
                    q[++tt] = e[i]; // 入队
                }
            }
    }
    return dist[end]; // 返回到目标节点的距离
}
  1. main 函数

主函数负责输入和初始化图。

int main()
{
    int a, n;
    scanf("%d %d", &a, &n);
    if (n < 0) a = -a, n = -n; // 处理负数的情况
    n++;
    for (int i = 1; i < n; i++)
        add(i, i + 1, a); // 添加边
    printf("PROD = %d", spfa(n)); // 输出结果
    return 0;
}

代码逻辑

  • 输入的a表示每条边的权重,n表示节点数。
  • 如果n为负数,则将其转换为正数,并反向a的符号。
  • 构建了一个从1到n的线性图,每条边的权重为a
  • 使用SPFA算法计算从节点1到节点n的最短路径,并输出结果。

堆优化dijkstra解法(手写堆)

#include <stdio.h>
#include <string.h>

const int N = 10010;

int e[N], h[N], ne[N], w[N], idx;
int dist[N];
bool state[N];
int heap_first[N], heap_second[N];
int size;

void add(int a, int b, int c)
{
    e[ ++ idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}

void heap_swap(int i, int j)
{
    if (i ^ j)
    {
        heap_first[i] ^= heap_first[j];
        heap_first[j] ^= heap_first[i];
        heap_first[i] ^= heap_first[j];
        heap_second[i] ^= heap_second[j];
        heap_second[j] ^= heap_second[i];
        heap_second[i] ^= heap_second[j];
    }
}

void down(int p)
{
    int t = p;
    if (p << 1 <= size && heap_first[p << 1] < heap_first[t])
        t = p << 1;
    if ((p << 1 | 1) <= size && heap_first[p << 1 | 1] < heap_first[t])
        t = p << 1 | 1;
    if (t ^ p)
    {
        heap_swap(t, p);
        down(t);
    }
}

void up(int p)
{
    while (p >> 1 && heap_first[p >> 1] > heap_first[p])
    {
        heap_swap(p >> 1, p);
        p >>= 1;
    }
}

void insert(int first, int second)
{
    size ++ ;
    heap_first[size] = first;
    heap_second[size] = second;
    up(size);
}

void erase(int p)
{
    heap_swap(p, size -- );
    up(p);
    down(p);
}

int dijkstra(int end)
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    insert(0, 1);
    while (size)
    {
        int t = heap_second[1];
        erase(1);
        if (state[t])continue;
        state[t] = true;
        for (int i = h[t]; i; i = ne[i])
            if (dist[e[i]] > dist[t] + w[i])
            {
                dist[e[i]] = dist[t] + w[i];
                insert(dist[e[i]], e[i]);
            }
    }
    return dist[end];
}

int main()
{
    int a, n, f = 1;
    scanf("%d %d", &a, &n);
    if (n < 0) n = -n, a = -a;
    if (a < 0) f = -f, a = -a;
    n ++ ;
    for (int i = 1; i < n; i ++ )
        add(i, i + 1, a);
    printf("PROD = %d\n", f * dijkstra(n));
    return 0;
}

代码解释

  1. 数据结构
  • e[N]:邻接表中的边的目标节点。
  • h[N]:每个节点的邻接链表的头部。
  • ne[N]:邻接表中的下一个边的索引。
  • w[N]:边的权重。
  • dist[N]:存储从源节点到各个节点的最短距离。
  • state[N]:标记节点是否已经被处理。
  • heap_first[N]:堆中存储的距离。
  • heap_second[N]:堆中存储的节点索引。
  • size:当前堆的大小。
  1. add 函数

这个函数向图中添加一条边。它将边的目标节点、权重和链表结构进行适当的更新。

void add(int a, int b, int c)
{
    e[++idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}
  1. 堆相关操作
  • heap_swap:交换堆中两个节点的值。
void heap_swap(int i, int j)
{
    if (i ^ j)
    {
        heap_first[i] ^= heap_first[j];
        heap_first[j] ^= heap_first[i];
        heap_first[i] ^= heap_first[j];
        heap_second[i] ^= heap_second[j];
        heap_second[j] ^= heap_second[i];
        heap_second[i] ^= heap_second[j];
    }
}
  • down:调整堆,从节点p向下调整。
void down(int p)
{
    int t = p;
    if (p << 1 <= size && heap_first[p << 1] < heap_first[t])
        t = p << 1;
    if ((p << 1 | 1) <= size && heap_first[p << 1 | 1] < heap_first[t])
        t = p << 1 | 1;
    if (t ^ p)
    {
        heap_swap(t, p);
        down(t);
    }
}
  • up:调整堆,从节点p向上调整。
void up(int p)
{
    while (p >> 1 && heap_first[p >> 1] > heap_first[p])
    {
        heap_swap(p >> 1, p);
        p >>= 1;
    }
}
  • insert:将一个新的节点插入到堆中。
void insert(int first, int second)
{
    size++;
    heap_first[size] = first;
    heap_second[size] = second;
    up(size);
}
  • erase:删除堆顶元素并调整堆。
void erase(int p)
{
    heap_swap(p, size--);
    up(p);
    down(p);
}
  1. Dijkstra 算法实现

dijkstra函数计算从节点1到目标节点的最短距离。

int dijkstra(int end)
{
    memset(dist, 0x3f, sizeof dist); // 初始化距离为无穷大
    dist[1] = 0; // 源节点到自身的距离为0
    insert(0, 1); // 插入源节点
    
    while (size)
    {
        int t = heap_second[1]; // 取出堆顶节点
        erase(1); // 删除堆顶
        if (state[t]) continue; // 如果已处理,跳过
        state[t] = true; // 标记为已处理
        
        for (int i = h[t]; i; i = ne[i]) // 遍历邻接边
            if (dist[e[i]] > dist[t] + w[i]) // 松弛操作
            {
                dist[e[i]] = dist[t] + w[i];
                insert(dist[e[i]], e[i]); // 插入新的距离
            }
    }
    return dist[end]; // 返回到目标节点的距离
}
  1. main 函数

主函数负责输入和初始化图。

int main()
{
    int a, n, f = 1;
    scanf("%d %d", &a, &n);
    if (n < 0) n = -n, a = -a; // 处理负数情况
    if (a < 0) f = -f, a = -a; // 处理权重负数情况
    n++;
    
    for (int i = 1; i < n; i++)
        add(i, i + 1, a); // 添加边
    
    printf("PROD = %d\n", f * dijkstra(n)); // 输出结果
    return 0;
}

代码逻辑

  • 输入的a表示每条边的权重,n表示节点数。
  • 如果na为负数,进行相应的转换。
  • 构建了一个从1到n的线性图,每条边的权重为a
  • 使用堆优化的Dijkstra算法计算从节点1到节点n的最短路径,并输出结果。

bfs版

#include <stdio.h>
const int N = 10010;
int e[N], ne[N], h[N], w[N], idx;
int q[N], hh, tt;
int dist[N];
bool state[N];
void add(int a, int b, int c)
{
    e[ ++ idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}
int bfs(int end)
{
    q[0] = 1;
    state[1] = true;
    while (hh <= tt)
    {
        int t = q[hh ++ ];
        if (t == end) return dist[t];
        for (int i = h[t]; i; i = ne[i])
            if (!state[e[i]])
            {
                state[e[i]] = true;
                q[ ++ tt] = e[i];
                dist[e[i]] = dist[t] + w[i];
            }
    }
    return -1;
}
int main()
{
    int a, n;
    scanf("%d %d", &a, &n);
    printf("PROD = ");
    if (n < 0) n = -n, a = -a;
    if (a < 0) putchar('-'), a = -a;
    n ++ ;
    for (int i = 1; i < n; i ++ )
        add(i, i + 1, a);
    printf("%d", bfs(n));
    return 0;
}

DFS版本

#include <stdio.h>
const int N = 10010;
int e[N], h[N], ne[N], w[N], idx;
int dist[N];
bool state[N];
void add(int a, int b, int c)
{
    e[ ++ idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx;
}
void dfs(int t)
{
    for (int i = h[t]; i; i = ne[i])
        if (!state[e[i]])
        {
            state[t] = true;
            dfs(e[i]);
            dist[t] = dist[e[i]] + w[i];
            state[t] = false;
        }
}
int main()
{
    int a, n;
    scanf("%d %d", &a, &n);
    printf("PROD = ");
    if (n < 0) n = -n, a = -a;
    if (a < 0) putchar('-'), a = -a;
    n ++ ;
    for (int i = 1; i < n; i ++ )
        add(i, i + 1, a);
    dfs(1);
    printf("%d", dist[1]);
    return 0;
}

kruskal解法

Kruskal算法是一种用于寻找最小生成树的贪心算法。它通过将图的边按权重排序,逐步选择权重最小的边,前提是选择后不会形成环,直到树中包含所有顶点。

#include <stdio.h>
#include <string.h>
const int N = 10010;
struct Edge
{
    int a, b, w;
}edges[N];
int a, n;
int res;
int fa[N];
int find(int x)
{
    if (x ^ fa[x]) fa[x] = find(fa[x]);
    return fa[x];
}
int kruskal()
{
    for (int i = 1; i <= n; i ++ )
    {
        int a = find(edges[i].a);
        int b = find(edges[i].b);
        int w = edges[i].w;
        if (a ^ b)
        {
            fa[a] = b;
            res += w;
        }
    }
    return res;
}
int main()
{
    scanf("%d %d", &a, &n);
    printf("PROD = ");
    if (n < 0) n = -n, a = -a;
    if (a < 0) putchar('-'), a = -a;
    n ++ ;
    for (int i = 1; i < n; i ++ )
    {
        edges[i].a = i;
        edges[i].b = i + 1;
        edges[i].w = a;
        fa[i] = i;
    }
    printf("%d", kruskal());
    return 0;
}

树状数组解法

#include <stdio.h>
#include <string.h>
const int N = 10010;
int a, n;
int tr[N];
int lowbit(int x)
{
    return x & -x;
}
void add(int x, int c)
{
    for (int i = x; i <= n; i += lowbit(i))
        tr[i] += c;
}
int sum(int x)
{
    int res = 0;
    for (int i = x; i; i -= lowbit(i))
        res += tr[i];
    return res;
}
int main()
{
    scanf("%d %d", &a, &n);
    printf("PROD = ");
    if (n < 0) n = -n, a = -a;
    for (int i = 1; i <= n; i ++ )
        add(i, a);
    printf("%d", sum(n));
    return 0;
}

并查集解法

#include <stdio.h>
#include <string.h>
const int N = 10010;
int a, n;
int fa[N], size[N];
int find(int x)
{
    if (fa[x] ^ x) fa[x] = find(fa[x]);
    return fa[x];
}
void merge(int a, int b)
{
    a = find(a), b = find(b);
    size[b] += size[a];
    fa[a] = b;
}
int main()
{
    scanf("%d %d", &a, &n);
    printf("PROD = ");
    if (n < 0) n = -n, a = -a;
    for (int i = 1; i <= n; i ++ )
        fa[i] = i, size[i] = a;
    for (int i = 1; i < n; i ++ )
        merge(i, n);
    printf("%d", size[n]);
    return 0;
}

11.简单计算

来源:简单计算
题目描述:
在这里插入图片描述
代码解决:

#include<iostream>
using namespace std;
int main()
{
    int code,n;
    double price,sum=0.0;
    for(int i=1;i<=2;i++)
        cin>>code>>n>>price,sum+=n*price;
    printf("VALOR A PAGAR: R$ %.2lf",sum);
    return 0;
}

结果显示:
在这里插入图片描述

12.球的体积

来源:球的体积

题目描述:
在这里插入图片描述
代码解决:

#include<bits/stdc++.h>
using namespace std;
int main() 
{
    int r; scanf("%d", &r);
    printf("VOLUME = %.3f", 4 / 3.0 * 3.14159 * r * r * r);
    return 0;
}

结果显示:
在这里插入图片描述

13.面积

来源:面积
题目描述:
在这里插入图片描述
在这里插入图片描述
代码解决:

#include<bits/stdc++.h>
using namespace std;
int main() 
{
    double a, b, c;
    cin>>a>>b>>c;
    printf("TRIANGULO: %.3f\n", a * c / 2);
    printf("CIRCULO: %.3f\n", 3.14159 * c * c);
    printf("TRAPEZIO: %.3f\n", (a + b) * c / 2);
    printf("QUADRADO: %.3f\n", b * b);
    printf("RETANGULO: %.3f\n", a * b);
    return 0;
}

结果显示:
在这里插入图片描述

14.平均数2

来源:平均数2
题目描述:
在这里插入图片描述
在这里插入图片描述
代码解决:

#include <iostream>
using namespace std;
int main()
{
    double a, b, c;
    cin >> a >> b >> c;
    printf("MEDIA = %.1lf", (a * 2 + b * 3 + c * 5) / 10.0);
    return 0;
}

结果显示:
在这里插入图片描述

15.工资和奖金

来源:工资和奖金

题目描述:
在这里插入图片描述
在这里插入图片描述
代码解决:

#include <cstdio>
#include<iostream>
using namespace std;
int main()
{
    char a[10];
    double b, c;

    cin>>a>>b>>c;
    printf("TOTAL = R$ %.2lf", b + c * 0.15);
    return 0;
}

结果显示:
在这里插入图片描述

16.最大值

来源:最大值
题目描述:
在这里插入图片描述
代码解决:

算法1:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int a,b,c,max;
    cin>>a>>b>>c;
    if(a>b)
        if(a>c)
            max=a;
        else
            max=c;
    else
        if(b>c)
            max=b;
        else
            max=c;
    cout<<max<<" eh o maior";
    return 0;
}

算法2:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int a,b,c,max;
    cin>>a>>b>>c;
    max=(a+b+abs(a-b))/2;
    max=(max+c+abs(max-c))/2;
    return 0;
}

在这里插入图片描述

算法3:

#include <iostream>
#include <algorithm>///一定要写这个头文件
using namespace std;
int main(){
    int a,b,c;
    int max1 = 0;
    cin>>a>>b>>c;
    max1 = max(a,b);///调用库函数max
    max1 = max(max1,c);

    cout<<max1<<" eh o maior"<<endl;
    return 0;
}

结果显示:
在这里插入图片描述

有人可能有疑惑:

#include<bits/stdc++.h>

是个什么东西,这里解答一下,这个被叫做万能头文件(但不是所有编译器都原生支持,比如VS系列)
这个库内起码包含了如下:

#include <iostream>//io流
#include <cstdio>//io流
#include <fstream>//文件的输入和输出
#include <algorithm>//算法
#include <cmath>//数学
#include <deque>//双端队列
#include <vector>//数据
#include <queue>//队列
#include <string>//字符串
#include <cstring>//字符串
#include <map>//关联容器,用于存储键值对,并根据键进行排序。它通常用于快速查找和关联数据
#include <stack>//栈
#include <set>//关联容器,用于存储唯一的元素,并根据元素的顺序自动排序

17.距离

来源:距离

题目描述:
在这里插入图片描述
代码解决:

#include <bits/stdc++.h>
using namespace std;
int n;
int main() {
    scanf("%d", &n);
    printf("%d minutos", n << 1);
    return 0;
}

结果显示:
在这里插入图片描述

18.燃料消耗

来源:燃料消耗

题目描述:
在这里插入图片描述
代码解决:

//本题只用scanf和printf可以做出来,但有两个小坑
#include<bits/stdc++.h>
using namespace std;
long long s,t;
//第一个坑,要开long long,因为数据有点大,int可能会爆0
double ans;
int main()
{
    scanf("%lld%lld",&t,&s);
    ans=t*s*1.0/12;
    //这道题第二个坑,乘1.0来保存小数点后的数
    printf("%.3lf",ans);
    return 0;
}

结果显示:
在这里插入图片描述

19.钞票和硬币

来源:钞票和硬币
题目描述:
在这里插入图片描述
在这里插入图片描述
代码解决:

#include <iostream>
using namespace std;
int main()
{
  double n;
  cin>>n;
  int m=(int)(n*100);
  int a[12]={10000,5000,2000,1000,500,200,100,50,25,10,5,1};
  printf("NOTAS:\n");
  for(int i=0;i<12;i++)
  {
      if(i<6){printf("%d nota(s) de R$ %.2f\n",m/a[i],(float)a[i]/100);m%=a[i];}
      if(i==6)printf("MOEDAS:\n");
      if(i>=6){printf("%d moeda(s) de R$ %.2f\n",m/a[i],(float)a[i]/100);m%=a[i];}
  }
}

结果显示:
在这里插入图片描述

20.天数转换

来源:天数转换

题目描述:
在这里插入图片描述
代码解决:

#include <iostream>
using namespace std;
int main()
{
    int n;
    cin >> n;
    printf("%d ano(s)\n", n / 365);
    n -= n / 365 * 365;
    printf("%d mes(es)\n", n / 30);
    n -= n / 30 * 30;
    printf("%d dia(s)\n", n);
    return 0;
}

结果显示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小unicorn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值