U-Net 网络是一种用于医学图像分割等领域的神经网络架构。
一、结构特点
U-Net 网络呈对称的 U 形结构。
- 收缩路径(下采样部分):由多个卷积层和池化层交替组成。这一部分的作用是逐渐提取图像的高级特征,同时减小特征图的空间尺寸,从而获取图像的上下文信息,对图像的整体结构有较好的理解。
- 扩张路径(上采样部分):通过反卷积操作逐步恢复特征图的空间尺寸,同时与收缩路径中相应层次的特征图进行拼接。这种拼接操作融合了不同层次的特征,既包含了高级的语义信息,又有低级的细节信息,有助于更准确地进行图像分割。
二、应用优势
- 对小样本数据表现良好:在医学图像等领域,数据获取往往较为困难,样本数量有限。U-Net 网络在小样本数据上能够有效地学习到特征,取得较好的分割效果。
- 精准的定位能力:由于其结构特点,能够准确地定位目标物体的边界,对于图像中目标的分割精度较高。
- 灵活性:可以应用于多种图像分割任务,如生物医学图像中的细胞分割、器官分割等。
三、工作原理
首先,将输入图像送入收缩路径进行特征提取。在收缩路径的每一层中,通过卷积操作提取特征,然后进行池化操作降低特征图的分辨率。随着网络层次的加深,特征图的数量逐渐增多,尺寸逐渐减小,提取到的特征也越来越抽象。
接着,在扩张路径中,通过反卷积操作逐步恢复特征图的尺寸,并与收缩路径中相应层次的特征图进行拼接。拼接后的特征图再经过一系列的卷积操作,进一步细化特征。最后,通过一个输出层得到分割结果。