2025代码审计工具推荐 ︱AI如何辅助开发者识别和修复安全漏洞

手动审查代码、识别漏洞是一项既复杂又繁重的任务,往往容易因人为疏忽而错过重要的安全问题。近年来,人工智能(AI)的快速发展为这一问题带来了新的解决方案。

本文将深入探讨AI如何辅助程序员识别和修复安全漏洞,并介绍AI技术在漏洞检测、漏洞修复和安全性增强方面的具体应用,从而启发程序员在日常工作中如何高效利用AI提升代码的安全性。

一、AI智能缺陷审计

传统的开发安全工具依赖于预定义的规则或模板来识别代码中的缺陷,但这些方法在处理复杂的代码上下文时,会产生较高的误报率或漏报问题。

AI工具,通过收集和处理代码库、历史缺陷数据、误报案例、知识库正确案例等数据,将代码的控制流和数据流信息(如函数调用关系、依赖关系、库函数文档等)构建成知识图谱,领先实现:

误报、漏报消减:深入理解代码的全局上下文,准确分析跨文件、跨函数的依赖关系;通过收集和学习新的代码样本、历史缺陷数据和误报案例,不断优化检测准确度,更精确地识别真实缺陷、缓解误报。


提高审计效率:通过自动化分析大规模代码库,减少了人工审计工作量,开发团队可以依赖灵脉SAST AI模型的分析建议,快速定位潜在缺陷、提升审计效率。

推荐工具:灵脉AI开发安全卫士4.0  https://sast.xmirror.cn/

支持通过AI模型为用户提供漏洞验证和审计建议。通过收集代码库、历史缺陷数据、误报案例、知识库正确案例等数据,并进行预处理和标注,将代码的控制流和数据流信息构建成知识图谱,将其整合到模型中,使模型达到了代码审计安全专家的能力,其模型可以全面地理解代码上下文以及函数之间调用关系,并给出准确的检测结果及审计原因。

由此能够帮助软件开发团队在代码审计过程中,快速并准确的提供与安全专家能力相当的检测结果及审计原因,特别是在处理大规模代码库时,灵脉SAST的AI智能误报检测功能在代码审计过程中,能够减少安全审计工作者的大量审计工作,从而提高审查效率。

通过使用AI漏洞验证提升的效率数据:

通过使用AI漏洞验证:可减少审计人员审计缺陷时间90%


二、AI漏洞代码自动修复

灵脉SAST全新接入AI大模型智能算法:AI修复技术通过将用户代码进行模块化分块,并利用先进的向量化技术构建代码的向量索引和用户代码向量库。

基于RAG和LLM编排技术,AI大模型对需要修复的漏洞代码给出修复建议并自动修复。

可大幅提升开发效率,降低人工修复的复杂度。尤其是在面对大规模代码库时,能够迅速定位问题并高效生成修复建议。

通过使用AI代码修复提升的效率数据:减少开发人员修复代码时间至少80%;修复后代码准确度至少可达到90%以上;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值