AIC Lab2 Common Source Amplifier

本文介绍了如何设计和模拟共源放大器,关注直流增益、输入信号幅度对增益的影响、电源电压对最大增益的影响,以及使用反馈进行线性化。通过实例和图表展示设计过程,包括选择晶体管参数、偏置点和负载电阻,以及探讨了线性化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lab2 Common Source Amplifier

Preface

In this lab you will:

  • Design and simulate a common-source amplifier.
  • Learn how to generate and use design charts.
  • Investigate gain non-linearity; the variation of the gain with input signal amplitude.
  • Study the maximum gain attainable for a resistive-loaded CS amplifier and the effect of supply scaling on max gain.
  • Learn how to use feedback to reduce non-linearity (gain linearization).

Part1 Sizing Chart

  1. We would like to design a resistive loaded CS amplifier that meets the specifications below. The design process involves selecting the sizing of the transistor (𝑊 and 𝐿), the bias point (𝑉𝐺𝑆), and the resistive load (𝑅𝐷).
Spec0.18um CMOS
DC Gain-8
Supply1.8V
Current consumption100uA
  1. The first design decision is to choose 𝐿. Since there is no spec on bandwidth (speed), we may choose a relatively long 𝐿 to provide large 𝑟𝑜 and avoid short channel effects. Note that 𝑟𝑜 appears in parallel with 𝑅𝐷. Assume we will choose 𝐿 = 2𝜇𝑚.
  2. We can show that the gain is given by
    ∣ A v ∣ ≈ g m R D = 2 I D V o v × R D = 2 V R D V o v |A_v|\approx g_mR_D=\frac{2I_D}{V_{ov}}\times R_D=\frac{2V_{R_D}}{V_{ov}} AvgmRD=Vov2ID×RD=Vov2VRD
    Interestingly, the gain only depends on the voltage drop across 𝑉𝑅𝐷 and 𝑉𝑜𝑣. However, to derive this expression we used 𝑔𝑚 = 2𝐼𝐷
    𝑉𝑜𝑣 which is based on the square-law. For a real MOSFET, if we compute
    𝑉𝑜𝑣 and 2𝐼𝐷/𝑔𝑚 they will not be equal. Let’s define a new parameter called V-star (𝑉∗) which is calculated from actual simulation data using the formula
    V ∗ = 2 I D g m < − − > g m = 2 I D V ∗ V^*=\frac{2I_D}{g_m}<-->g_m=\frac{2I_D}{V^*} V=gm2ID<>gm=V2ID
    For a square-law device, 𝑉∗ = 𝑉𝑜𝑣, however, for a real MOSFET they are not equal. The actual gain is now given by
    ∣ A v ∣ ≈ 2 V R D V ∗ |A_v|\approx\frac{2V_{R_D}}{V^*} AvV2VRD
  3. The choice of 𝑉𝑅𝐷 is constrained by the output signal swing. Since we usually want to provide large output swing, we choose the common-mode (CM) output level (DC output level) around 𝑉𝐷𝐷/2. Thus, although increasing 𝑉𝑅𝐷 increases the gain, but the choice is limited by the supply voltage which is aggressively scaled down in modern technologies. That’s one reason it is difficult to get high gain in modern technologies. Assuming CM output = 𝑉𝑅𝐷 = 𝑉𝐷𝐷/2 and given the DC bias current, determine the value of 𝑅𝐷. Again, it is interesting to note that although the gain equals 𝑔𝑚𝑅𝐷, it actually does not depend on 𝑅𝐷 itself, but on the voltage drop across it, i.e., the product 𝐼𝐷 × 𝑅𝐷.
RD=9K
  1. Given 𝐴𝑣 and 𝑉𝑅𝐷, calculate the required 𝑉∗ (again note that 𝑉∗ ≠ 𝑉𝑜𝑣 for a real MOSFET). Let’s name this value 𝑉𝑄.
  2. The remaining variable in the design is to calculate 𝑊. Since the square-law is not accurate, we cannot use it to determine the sizing. Instead, we will use a sizing chart generated from simulation. Create a testbench for NMOS and PMOS characterization (we will use the PMOS later in Part 2 of this lab). Use 𝑊 = 10𝜇𝑚 (we will understand why shortly) and 𝐿 = 2𝜇𝑚 (the same 𝐿 that we chose before).
    在这里插入图片描述
  3. Sweep VGS from 0 to ≈ 𝑉𝑇𝐻 + 0.4𝑉 with 10mV step. Set 𝑉𝐷𝑆 = 𝑉𝐷𝐷/2.
    在这里插入图片描述
  4. We want to compare 𝑉∗ = 2𝐼𝐷/𝑔𝑚 and 𝑉𝑜𝑣 = 𝑉𝐺𝑆 − 𝑉𝑇𝐻 by plotting them overlaid. Use the calculator to create expressions for 𝑉∗ and 𝑉𝑜𝑣. Export the expressions to adexl.
    在这里插入图片描述
  5. Plot 𝑉∗ and 𝑉𝑜𝑣 overlaid vs VGS. Make sure the y-axis of both curves has the same range. You will notice that at the beginning of the strong inversion region, 𝑉∗ and 𝑉𝑜𝑣 are relatively close to each other (i.e., square-law is relatively valid). For deep strong inversion (large 𝑉𝑜𝑣: velocity saturation and
    mobility degradation) or weak inversion (near-threshold and subthreshold operation) the behavior is quite far from the square-law (although we are using 𝐿 = 2𝜇𝑚).
    在这里插入图片描述
  6. On the 𝑉∗ and 𝑉𝑜𝑣 chart locate the point at which 𝑉∗ = 𝑉𝑄∗. Find the corresponding 𝑉𝑜𝑣𝑄 and 𝑉𝐺𝑆𝑄.
𝑉GS𝑄=610mV
𝑉𝑜𝑣𝑄=209.386mV
11. Plot 𝐼𝐷, 𝑔𝑚, and 𝑔𝑑𝑠 vs 𝑉𝐺𝑆. Find their values at 𝑉𝐺𝑆𝑄. Let’s name these values 𝐼𝐷𝑋, 𝑔𝑚𝑋, and 𝑔𝑑𝑠𝑋

在这里插入图片描述

在这里插入图片描述

IDX=36.04uA
gmX=308.288u
gdsX=981.5n
12. Now back to the assumption that we made that 𝑊 = 10𝜇𝑚. This is not the actual value that we will use for our design. But the good news is that 𝐼𝐷 is always proportional to 𝑊 irrespective of the operating region and the model of the MOSFET (regardless square-law is valid or no). Thus, we can use ratio and proportion (cross-multiplication) to determine the correct width at which the current will be 𝐼𝐷𝑄 = 100𝜇𝐴 as given in the specs. Calculate 𝑊 as shown below.
WID
10um36.04uA
27.7um100uA

13.Now we are almost done with the design of the amplifier. Note that 𝑔𝑚 is also proportional to 𝑊 as long as 𝑉𝑜𝑣 is constant. On the other hand, 𝑟𝑜 = 1/𝑔𝑑𝑠 is inversely proportional to 𝑊 (𝐼𝐷) as long as 𝐿 is constant. Before leaving this part, calculate 𝑔𝑚𝑄 and 𝑔𝑑𝑠𝑄 using ratio and proportion (crossmultiplication) and double check that 𝐴𝑣 = −𝑔𝑚(𝑅𝐷||𝑟𝑜) meet the required gain spec.

W𝑔𝑚𝑄
10um308.288u
27.7um893.957u
W𝑔𝑑𝑠𝑄
10um981.5n
27.7um2718.755n
ro=367.815k

Part2 CS Amplifier

  1. OP and AC Analysis
  • Create a testbench for the resistive loaded CS amplifier using the 𝑉𝐺𝑆𝑄, 𝑅𝐷, 𝐿, and 𝑊 that you got from the previous part.
    在这里插入图片描述

  • Simulate the DC OP. Report a snapshot for the key operating point (OP) parameters. Compare the results with the results you obtained in Part 1. Since we used chart-based design, the results should agree well
    在这里插入图片描述
    在这里插入图片描述

  • Compare 𝑟𝑜 and 𝑅𝐷. Is the assumption of ignoring 𝑟𝑜 justified in this case? Do you expect the error to remain the same if we use min 𝐿?
    Answer: Yes, ro=365.33K, RD=9K. So (ro // RD) is close to RD.
    No, ro is proportional to L. When L become small the ro will not large enough to ignore it.

  • Calculate the intrinsic gain of the transistor.
    Answer: Intrinsic Gain = gm x ro = 313.712

  • Calculate the amplifier gain analytically. What is the relation (≪, <, ≈, >, ≫) between the amplifier gain and the intrinsic gain?
    Answer: amplifier Gain = gm x RD ≈ 7.72 << Intrinsic Gain.

  • Create a new simulation configuration and run AC analysis (from 1Hz to 1GHz). Report the gain vs frequency. Annotate the DC gain and make sure it meets the spec.
    在这里插入图片描述
    the DC Gain is 17.53dB and ie meets the spec.

2.Gain Non-Linearity

  • Create a new simulation configuration. Perform a DC sweep for the input voltage from 0 to 𝑉𝐷𝐷 with 2mV step.
    在这里插入图片描述

  • Report VOUT vs VIN. Is the relation linear?
    Answer: NO.

  • Calculate the derivative of VOUT using calculator. Plot the derivative vs VIN. The derivative is itself the small signal gain. Is the gain linear (independent of the input)?
    在这里插入图片描述

  • Set the properties of the voltage source to apply a transient stimulus (sine wave of 1kHz frequency and 10mV amplitude superimposed on the DC input voltage).
    在这里插入图片描述

  • Create a new simulation configuration. Run transient simulation for 2ms. Plot gm vs time. Does gm vary with the input signal? What does that mean?
    在这里插入图片描述
    Answer: The gm varies with the input signal. The Gain varies with the input signal, too. It‘ s what we don’t to meet.

  • Is this amplifier linear? Comment.
    Answer: The Gain varies with the input signal. varies with the VGS.

  1. Maximum Gain
  • We want to investigate the variation of gain vs RD. We will use AC analysis to calculate the small signal gain. Set the source AC magnitude = 1. Note that AC analysis is a linear analysis, so we use a magnitude of one such that the output is itself the gain. Keep the DC value of VGS constant at the DC value you selected in Part 1.
  • Set AC simulation to sweep design variable (RD from ¼ the value you selected in Part 1 to 4 times the value you selected in Part 1). Set the AC simulation frequency at 1 Hz (single frequency point). The purpose of the AC analysis here is just to get the small signal gain and not to investigate the frequency response.
  • Use the calculator to plot the gain vs RD.
    在这里插入图片描述
  • You will find that the gain increases with RD and then decreases with RD. Justify this behavior.
    From 2.25K to 12.375K the gain increases with RD and from 15.75K to 36K decreases with RD.
  • What is the value of RD that gives the highest gain? What is the highest gain?
RD=12.375K
Gain~highest~=20.521dB
- Analytically calculate the value of RD that gives the highest gain and the highest gain using the expressions in Part 1. Compare simulation and analysis results. - What is the available signal swing at the point of maximum gain?

在这里插入图片描述
Answer: VD=570.008mV and VGS-Vth=610mV - 400mV = 210mV , the available signal swing at the point of maximum gain is from 210mV to 930mV.

  • Is scaling down the supply voltage good for gain? Comment.
    在这里插入图片描述
  1. Gain Linearization (feedback)
  • We will use feedback to improve the gain non-linearity. We will study feedback in more details later.

  • Create a new schematic and copy the old schematic into it.

  • Replace the resistive load with a PMOS current source (active load) as shown below. Create a sizing chart for the PMOS similar to what we did for NMOS in Part 1 using 𝐿 = 2𝜇𝑚 and 𝑊 = 10𝜇𝑚 (you may use the same test bench used in Part 1). From the chart, assuming 𝑉𝑄∗ similar to NMOS, determine 𝑉𝐺𝑆𝑄 and 𝐼𝐷𝑋. Using ratio and proportion (cross-multiplication) determine 𝑊 similar to Part 1. Note that the PMOS load must have the same bias current as the NMOS input device.

  • Note that it is better to bias the PMOS using a voltage source between the gate of the PMOS and VDD.
    在这里插入图片描述
    在这里插入图片描述

  • Add two resistors: input resistor (𝑅𝑖𝑛) = 1M and feedback resistor (𝑅𝑓). Choose 𝑅𝑓 to give a voltage gain approximately equal to 𝑅𝑓/𝑅𝑖𝑛 = |𝐴𝑣| as given in the specs.
    在这里插入图片描述

  • Perform a DC sweep for the input voltage (VSIG) from 0 to 𝑉𝐷𝐷 with 2mV step.

  • Report VIN and VOUT vs VSIG (overlaid). At what voltage do the two curves cross? Why?
    在这里插入图片描述

  • Is VOUT vs VSIG linear? Why?
    Answer: Yes. The gm also does not vary with the time.
    在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值