Day16|Leetcode 104. 二叉树的最大深度 111.二叉树的最小深度 Leetcode 222.完全二叉树的节点个数

Leetcode 104. 二叉树的最大深度

题目链接 104 二叉树的最大深度

昨天已经用层序遍历模板(广度优先遍历)已经做过了,我们现在用递归法来做一下这个题目,在做之前,需要了解两个点:

本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)

而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。

接着还有我们二叉树递归的三个步骤:

  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回这棵树的深度,所以返回值为int类型。
  2. 确定终止条件:如果为空节点的话,就返回0,表示高度为0。
  3. 确定单层递归的逻辑:先求它的左子树的深度,再求右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。

所以直接上代码:
 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
int getdepth(TreeNode* node){
    if(node == NULL){
        return 0;
    }
    int leftdepth = getdepth(node->left);//左
    int rightdepth = getdepth(node->right);//右
    int depth = 1+max(leftdepth,rightdepth);//中
    return depth;
}
    int maxDepth(TreeNode* root) {//并不是真正意义上的根
    return getdepth(root);//
     
    }
};

Leetcode 111 二叉树的最小深度

题目链接 111 二叉树的最小深度

本题昨天也写过了,今天用递归法写一下,这里有一个陷阱,就是题目定义了 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。如果左右节点有NULL就不能算到深度上面,只能算子节点不为空的节点,下面上代码:
 

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

Leetcode 222 完全二叉树的节点个数

题目链接 222 完全二叉树的节点个数

思路:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一 

这里是没有运用完全二叉树的特性,就按照普通二叉树来做。

代码:
 

class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == NULL) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};

如果仔细观察完全二叉树的特性:

情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

情况一:可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

情况二:分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

怎么判断是否为满二叉树呢?左叶子节点的深度等于右叶子节点的深度,(用指针寻找)。

下面上代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int countNodes(TreeNode* root) {
        if(root == NULL){
            return 0;
        }
        TreeNode* left = root->left;//定义指针来判断深度是否相等
        TreeNode* right = root->right;
        int leftDepth = 0,rightDepth = 0;
        while(left){
            left = left->left;
            leftDepth++;
        }
        while(right){
            right = right->right;
            rightDepth++;
        }
        if(leftDepth == rightDepth){
            return (2<<leftDepth)-1;//位运算,2<<1相当于2^2
        }
        int leftTreeNum = countNodes(root->left);
        int rightTreeNum = countNodes(root->right);
        int result = leftTreeNum + rightTreeNum + 1;
        return result;
    }
};

end

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值