一、相同的树
问题描述:
给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
解题思路:
1、首先判断这两颗树是不是都为空,如果都为空,那么返回true。
2、如果二者中有一个为空,那么返回false。
3、判断二者的根节点的值是否相同,不同的话就返回false。
4、接着直接返回递归上述过程(参数左右子树同时满足)。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p==null && q==null){
return true;
}else if(p==null || q==null){
return false;
}else if(p.val != q.val){
return false;
}else{
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
}
}
二、另一颗树的子树
问题描述:
给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。
二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree 也可以看做它自身的一棵子树。
解题思路:
1、本题我们我们可以用到第一题的判断二者是否为同一颗树这个函数直接拿来用。
2、老规矩,先判断二者是否都为空,都为空的话返回false。
3、子树可能是父树的左子树。
4、子树可能是父树的右子树。
5、都不满足的话返回false。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p==null && q==null){
return true;
}else if(p==null || q==null){
return false;
}else if(p.val != q.val){
return false;
}else{
return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
}
}
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if(root ==null || subRoot==null){
return false;
}
if(isSameTree(root,subRoot)){
return true;
}
if(isSubtree(root.right,subRoot)){
return true;
}
if(isSubtree(root.left,subRoot)){
return true;
}
return false;
}
}
三、二叉树的最大深度
问题描述:
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
解题思路:
1、二叉树的最大深度无非就是左子树和右子树的最大深度+1。
2、二叉树根节点为null的话,返回0。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if(root == null) {
return 0;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return leftHeight > rightHeight ? leftHeight+1 : rightHeight+1;
}
四、二叉树的前序非递归实现
问题描述:实现二叉树的前序遍历。
解题思路:本题的意思就是每访问到一个节点如何给它存起来,那么我们定义一个顺序表来存储!
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<Integer>();
preorder(root, ret);
return ret;
}
public void preorder(TreeNode root, List<Integer> ret) {
if (root == null) {
return;
}
ret.add(root.val);
preorder(root.left, ret);
preorder(root.right, ret);
}
}
五、二叉树的中序非递归实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<Integer>();
inorder(root, ret);
return ret;
}
public void inorder(TreeNode root, List<Integer> ret) {
if (root == null) {
return;
}
inorder(root.left, ret);
ret.add(root.val);
inorder(root.right, ret);
}
}
六、二叉树的后序非递归实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<Integer>();
postorder(root, ret);
return ret;
}
public void postorder(TreeNode root, List<Integer> ret) {
if (root == null) {
return;
}
postorder(root.left, ret);
postorder(root.right, ret);
ret.add(root.val);
}
}
七、对称二叉树
问题描述:
给你一个二叉树的根节点
root
, 检查它是否轴对称。
解题思路:
1、先搞懂对称二叉树的概念,就是一颗树,左右子树轴对称。
2、老规矩,若根节点为空,返回true。
3、若左右子树都为null,则返回true。
4、判断左子树的根和右子树的根的值是否相同,不同,直接返回false。
5、递归调用函数,传左子树的左 和右子树的右比较 && 左子树的右 和右子树的左比较。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null){
return true;
}
return isSymmetricChild(root.left,root.right);
}
private boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree){
if(leftTree == null && rightTree == null){
return true;
}
if(leftTree==null || rightTree==null) {
return false;
}
if(leftTree.val!=rightTree.val) {
return false;
}
return isSymmetricChild(leftTree.left,rightTree.right) && isSymmetricChild(leftTree.right,rightTree.left);
}
}
八、平衡二叉树
问题描述:
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
方法一:自顶向下递归
具体做法类似于二叉树的前序遍历,即对于当前遍历到的节点,首先计算左右子树的高度,如果左右子树的高度差是否不超过 1,再分别递归地遍历左右子节点,并判断左子树和右子树是否平衡。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
} else {
return Math.abs(height(root.left) - height(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
}
public int height(TreeNode root) {
if (root == null) {
return 0;
} else {
return Math.max(height(root.left), height(root.right)) + 1;
}
}
}
方法二:自低向上递归
方法一由于是自顶向下递归,因此对于同一个节点,函数 height 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 height 只会被调用一次。自底向上递归的做法类似于后序遍历,对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定是非负整数),否则返回 -1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。
class Solution {
public boolean isBalanced(TreeNode root) {
return height(root) >= 0;
}
public int height(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = height(root.left);
int rightHeight = height(root.right);
if (leftHeight == -1 || rightHeight == -1 || Math.abs(leftHeight - rightHeight) > 1) {
return -1;
} else {
return Math.max(leftHeight, rightHeight) + 1;
}
}
}