精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻
💖🔥作者主页:计算机毕设木哥🔥 💖
文章目录
一、项目介绍
在当今高度信息化的社会,企业面临着激烈的竞争,人力资源管理成为提高企业竞争力的关键因素。为了更有效地评估员工的绩效,许多企业开始采用大数据技术进行员工考核数据分析。《基于大数据的员工考核数据分析系统》这一课题正是在这样的背景下应运而生。随着企业规模的扩大和业务的多样化,传统的员工考核方法已无法满足现代企业的需求,因此,开发一个基于大数据的员工考核数据分析系统具有重要的现实意义。
然而,现有的解决方案在实际应用中暴露出一些问题。例如,数据收集和整合的难度较大,导致分析结果可能不够准确;此外,部分系统过于依赖人工操作,降低了数据处理的效率。这些问题使得现有解决方案在实际应用中的效果有限,进一步强调了开展本课题研究的必要性。
本课题旨在构建一个高效、准确的基于大数据的员工考核数据分析系统,通过对海量数据的挖掘和分析,为企业提供更为客观、全面的员工绩效评估。通过实现这一目标,我们期望能够提高企业人力资源管理的水平,从而提升企业的整体竞争力。因此,本课题的研究具有重要的理论和实践价值,对于推动企业人力资源管理的现代化具有深远的意义。
二、开发环境
- 大数据技术:Hadoop、Spark、Hive
- 开发技术:Python、Django框架、Vue、Echarts
- 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机
三、系统展示-基于大数据的员工考核数据分析系统
四、代码展示
import sys
sys.path.append(r'F:\workplace\Python\ml\LSTM-Agricultural-Products-Prices\Time-Series-Prediction-with-LSTM/')
from utils import eemd_tools, data_tools, networks_factory, data_metrics
from utils.constants import const
# fix random seed for reproducibility
np.random.seed(7)
data_multi = np.load(const.PROJECT_DIR + "data/eemd/apple/data_multi.npy")
print("# shape", data_multi.shape) # not .shape()
# print(data_multi)
n_dims = data_multi.shape[1] # magic number !
print("# dims: ", n_dims)
# normalize features
scaler = data_tools.Po_MinMaxScaler
scaled = scaler.fit_transform(data_multi)
output = 1
lag = const.LOOK_BACK
reframed = data_tools.series_to_supervised(scaled, lag, output)
# drop columns we don't want to predict
index_drop = [-j-1 for j in range(data_multi.shape[1] - 1)]
reframed.drop(reframed.columns[index_drop], axis=1, inplace=True)
data_supervised = reframed.values
print("# shape:", reframed.shape)
print(len(data_multi) == len(reframed) + lag)
# print(reframed.head(3))
# split into train and test sets
train_size = int(len(data_supervised) * const.TRAIN_SCALE)
test_size = len(data_supervised) - train_size
train_data, test_data = data_supervised[0:train_size,:], data_supervised[train_size:len(data_multi),:]
print(len(train_data), len(test_data))
print(len(data_supervised) == len(train_data) + len(test_data))
# print(train_data)
# split into input and outputs
train_X, train_Y = train_data[:, :-1], train_data[:, -1]
test_X, test_Y = test_data[:, :-1], test_data[:, -1]
print("# shape:", train_X.shape)
print("# shape:", train_Y.shape)
from sklearn.utils import shuffle
from scipy.sparse import coo_matrix
# shuffle train set (include validation set)
trainX_sparse = coo_matrix(train_X) # sparse matrix
train_X, trainX_sparse, train_Y = shuffle(train_X, trainX_sparse, train_Y, random_state=0)
time_steps = lag
n_lstm_neurons = [8, 16, 32, 64, 128]
# n_lstm_neurons = [8] # for once
n_epoch = networks_factory.EPOCHS
n_batch_size = networks_factory.BATCH_SIZE
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], time_steps, train_X.shape[1]//time_steps))
test_X = test_X.reshape((test_X.shape[0], time_steps, test_X.shape[1]//time_steps))
print(train_X.shape, train_Y.shape)
print(test_X.shape, test_Y.shape)
for i, n_lstm_neuron in enumerate(n_lstm_neurons):
print("-----------n_lstm_neuron: %d--------------" % n_lstm_neuron)
s, model = networks_factory.create_lstm_model_dropout(lstm_neurons=n_lstm_neuron, hidden_layers=2,
lenth=time_steps, dims=n_dims, n_out=1)
model.compile(loss='mean_squared_error', optimizer='adam')
history = model.fit(train_X, train_Y, epochs=10, batch_size=n_batch_size, validation_split=const.VALIDATION_SCALE,
verbose=0, callbacks=[networks_factory.ES]) # callbacks=[networks_factory.ES]
print("# Finished Training...")
# make a prediction
train_predict = model.predict(train_X)
test_predict = model.predict(test_X)
# invert predictions
inv_trainP, inv_trainY = data_tools.inv_transform_multi(scaler, train_X, train_predict, train_Y)
inv_testP, inv_testY = data_tools.inv_transform_multi(scaler, test_X, test_predict, test_Y)
# calculate RMSE, MAPE, Dstat
train_rmse = sqrt(mean_squared_error(inv_trainP, inv_trainY))
test_rmse = sqrt(mean_squared_error(inv_testP, inv_testY))
print('Train RMSE: %.4f, Test RMSE: %.4f' % (train_rmse, test_rmse))
train_mape = data_metrics.MAPE(inv_trainP, inv_trainY)
test_mape = data_metrics.MAPE(inv_testP, inv_testY)
print('Train MAPE: %.4f, Test MAPE: %.4f' % (train_mape, test_mape))
train_ds = data_metrics.Dstat(inv_trainP, inv_trainY)
test_ds = data_metrics.Dstat(inv_testP, inv_testY)
print('Train Dstat: %.4f, Test Dstat: %.4f' % (train_ds, test_ds))
print("# All Done!")
五、论文展示
六、项目总结
本研究《基于大数据的员工考核数据分析系统》针对当前企业人力资源管理中存在的问题,提出了一种利用大数据技术进行员工绩效评估的新方法。课题的开展旨在提高企业人力资源管理水平,提升企业竞争力。通过构建一个高效、准确的员工考核数据分析系统,我们成功地解决了传统考核方法在数据收集、整合和分析方面的难题,为企业提供了更为客观、全面的员工绩效评估。
在本研究中,我们明确提出了基于大数据的员工考核数据分析系统的设计思路和实现方法,通过实际应用验证了其有效性和可行性。这一研究成果不仅解决了企业在人力资源管理中的实际问题,还为相关领域的理论研究提供了新的思路和方向。