剑指offer—JZ10 斐波那契数列、JZ69 跳台阶

剑指offer—JZ10 斐波那契数列、JZ69 跳台阶

在这里插入图片描述
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*),同样的类型的题还有兔子繁殖的问题。大同小异。
在这里插入图片描述

下面我们来谈及斐波那契数列的解决方法:

递归法

谈起斐波那契数列,相信大家一定绕不开递归这个方法,大部分读者第一次接触学习递归,都应该是用斐波那契数列来实现递归的,但递归虽然能实现斐波那契函数,但有一定的缺点。通过f[n] = f[n-1] + f[n-2], 初始值f[0]=0, f[1]=1这个公式可以直接将递归写出来:

int my_Fibonacci(int n)
{
	if (n < 3)
	{
		return 1;
	}
	else
	{
		return my_Fibonacci(n - 1)+ my_Fibonacci(n - 2);
	}
}
int main()
{
	int n = 0;
	while (scanf("%d", &n) != EOF)
	{
		int ret = 0;
		ret = my_Fibonacci(n);
		printf("所求的斐波那契数列的第%d项为:%d\n", n, ret);
	}
	return 0;
}

但此种方法过慢,会超时,时间复杂度是O(2^n);空间复杂度是使用递归栈的空间。

时间复杂度 O(n)、空间复杂度O(1)的解法—动态规划法

用动态规划,优化掉递归栈空间。

int fib_n(int n)
{
    int dp[3] = {1, 1};
    if (n <= 1) return dp[n];

    for (int i = 2; i <= n; ++i)
        dp[i % 3] = dp[(i - 1) % 3] + dp[(i - 2) % 3];

    return dp[n % 3];
}

时间复杂度 O(logn) 、空间复杂度O(1)的解法

对于时间复杂度 O(logn) 的解法,我们可以思考一下下面的计算方式。

考虑一个求幂运算。比如求an,一般来说需要n次累乘,时间复杂度显然是O(n)。实际上可以通过递归达到一种更优化的效果:

an = (an/2)2 * an%2

这里的n/2是取整,如5/2=2。这样就可以实现相当于二分的效果,时间复杂度为O(logn)。

对于Fib数列an(n ≥ 0),可以通过矩阵乘法的方式进行递推:
在这里插入图片描述
进而可以得到:
在这里插入图片描述
这样就可以把斐波那契数列问题转化成了一个求矩阵幂的运算问题。
结合以上思路,首先将其转化为矩阵求幂问题,然后进行二分,O(logn)解法由此诞生。

int** mult(int** m1, int** m2)
{
    int** res = new int*[2];
    for (int i = 0; i < 2; ++i) res[i] = new int[2];

    res[0][0] = m1[0][0] * m2[0][0] + m1[0][1] * m2[1][0];
    res[0][1] = m1[0][0] * m2[0][1] + m1[0][1] * m2[1][1];
    res[1][0] = m1[1][0] * m2[0][0] + m1[1][1] * m2[1][0];
    res[1][1] = m1[1][0] * m2[0][1] + m1[1][1] * m2[1][1];

    return res;
}

int** recur(int x)
{
    if (x == 0) {
        int** res = new int*[2];
        for (int i = 0; i < 2; ++i) res[i] = new int[2];
        res[0][0] = res[1][1] = 1;
        res[0][1] = res[1][0] = 0;
        return res;
    }
    if (x == 1) {
        int** res = new int*[2];
        for (int i = 0; i < 2; ++i) res[i] = new int[2];
        res[0][1] = res[1][0] = res[1][1] = 1;
        res[0][0] = 0;
        return res;
    }
    int** half = recur(x / 2);
    return mult(mult(half, half), recur(x % 2));
}

// time: O(logn)
int fib_logn(int n)
{
    if (n == 0 || n == 1) return 1;
    int** mat = recur(n - 1);
    return mat[0][1] + mat[1][1];
}

JZ69 跳台阶

在这里插入图片描述
从本质上而言,青蛙跳台阶也是斐波那契数列的问题。虽然他没有给出具体的公式而较为抽象,但经过总结后得出的公式规律是与斐波那契数列有很大的关系的。
首先,当N=1时,青蛙有一种跳法;

当N=2时,青蛙可以跳两次一级台阶,也可以跳一次二级台阶,则有两种跳法;

当N=3时,青蛙首先跳一次一级台阶,那么还剩两层的台阶,这时就是N=2时的跳法;青蛙跳一次二级台阶时,此时只剩一层台阶,这时就是N=1时的跳法,总结下来,此时的跳法就是(N=1)+(N=2)种跳法。

当N=4时,青蛙跳一次一级台阶时,还剩三层台阶,这时就是N=3时的跳法;青蛙跳一次二级台阶时,还剩二层台阶,这时就是N=2时的跳法;总结下来,此时的跳法就是(N=2)+(N=3)种跳法。

总而言之,当N>2时,就是前面两个的相加就得到青蛙跳台阶方法的总数,即符合斐波那契数列的数学特征,本质上第三个数只与前两个数有关。
归纳总结后,得到以下的数学表达式
在这里插入图片描述
既然如此,此题解的不同方式都可以与上述斐波那契数列的题解一一对齐,这边不多赘述,仅显现出一种简单的解法。

int my_Fibonacci(int number)
{
	int n1 = 1;int n2 = 2;
	if (number == 1)
	{
		return n1;
	}
	if (number == 2)
	{
		return n2;
	}
	for (int i = 3;i <= n;i++)
	{
		int temp = n2;
		n2 = n1 + n2;
		n1 = temp;
	}
	return n2;
}
int main()
{
	int n = 0;
	int ret = 0;
	while (scanf("%d", &n) != EOF)
	{
		ret = my_Fibonacci(n);
		printf("所求的斐波那契数列的第%d项为:%d\n", n, ret);
	}
	return 0;
}

方法一:迭代相加(推荐使用)

知识点:动态规划

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果。本解法属于动态规划空间优化方法。
复杂度分析:
时间复杂度:O(n),其中n为输入的数
空间复杂度:O(1),常数级变量,没有其他空间。

方法二:递归法(扩展思路)

知识点:递归

递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。
复杂度分析:

时间复杂度:O(2^n),每个递归会调用两个递归,因此呈现2的指数增长。
空间复杂度:O(n),栈空间最大深度为n。

  • 8
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值