【数学建模】车灯线光源的优化设计之旋转抛物面反射问题求解

曲面的切平面与法线

(求梯度,对 x , y , z x,y,z x,y,z分别求偏导)
1.曲面一般形式 : F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0
算法 : g r a d F = ( F x , F y , F z ) grad F = (F_x,F_y,F_z) gradF=(Fx,Fy,Fz)
则有切平面 F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0) = 0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0

法线 x − x 0 F x = y − y 0 F y = z − z 0 F z \dfrac{x-x_0}{F_x} = \dfrac{y-y_0}{F_y} = \dfrac{z-z_0}{F_z} Fxxx0=Fyyy0=Fzzz0

2.曲面参数形式 { x = X ( u , v ) y = Y ( u , v ) z = Z ( u , v ) ( u , v ) ∈ D \begin{cases} x = X(u,v)\\ y = Y(u,v)\\ z = Z(u,v)\\ (u,v) \in D \end{cases} x=X(u,v)y=Y(u,v)z=Z(u,v)(u,v)D


空间曲线的切线和法平面

原理:切线就是割线无限逼近

Γ = { x = x ( t ) y = y ( t ) z = z ( t ) \Gamma = \begin{cases}x = x(t)\\y=y(t)\\z=z(t)\end{cases} Γ= x=x(t)y=y(t)z=z(t)

M 0 ( x ( t 0 ) , y ( t 0 ) , z ( t 0 ) ) M_0(x(t_0),y(t_0),z(t_0)) M0(x(t0),y(t0),z(t0))

M ( x ( t 0 + Δ t ) , y ( t 0 + Δ t ) , z ( t 0 + Δ t ) ) M(x(t_0+\Delta t),y(t_0+\Delta t),z(t_0+\Delta t)) M(x(t0+Δt),y(t0+Δt),z(t0+Δt))

M 0 M → = ( x ( t 0 + Δ t ) − x ( t 0 ) , y ( t 0 + Δ t ) − y ( t 0 ) , z ( t 0 + Δ t ) − z ( t 0 ) ) \overrightarrow{M_0 M} =(x(t_0+\Delta t)-x(t_0),y(t_0+\Delta t)-y(t_0),z(t_0+\Delta t)-z(t_0)) M0M =(x(t0+Δt)x(t0),y(t0+Δt)y(t0),z(t0+Δt)z(t0))

M 0 M 直线方程 ( 点向式 ) : x − x 0 x ( t 0 + Δ t ) − x ( t 0 ) = y − y 0 y ( t 0 + Δ t ) − y ( t 0 ) = z − z 0 z ( t 0 + Δ t ) − z ( t 0 ) M_0M直线方程(点向式): \dfrac{x-x_0}{x(t_0+\Delta t)-x(t_0)}=\dfrac{y-y_0}{y(t_0+\Delta t)-y(t_0)}=\dfrac{z-z_0}{z(t_0+\Delta t)-z(t_0)} M0M直线方程(点向式):x(t0+Δt)x(t0)xx0=y(t0+Δt)y(t0)yy0=z(t0+Δt)z(t0)zz0

M M M去逼近 M 0 M_0 M0,等价于 Δ t → 0 \Delta t \to 0 Δt0

如把式子都除个 Δ t \Delta t Δt

式子变成 M 0 M 直线方程 : x − x 0 x ( t 0 + Δ t ) − x ( t 0 ) Δ t = y − y 0 y ( t 0 + Δ t ) − y ( t 0 ) Δ t = z − z 0 z ( t 0 + Δ t ) − z ( t 0 ) Δ t M_0M直线方程: \dfrac{x-x_0}{\dfrac{x(t_0+\Delta t)-x(t_0)}{\Delta t}}=\dfrac{y-y_0}{\dfrac{y(t_0+\Delta t)-y(t_0)}{\Delta t}}=\dfrac{z-z_0}{\dfrac{z(t_0+\Delta t)-z(t_0)}{\Delta t}} M0M直线方程:Δtx(t0+Δt)x(t0)xx0=Δty(t0+Δt)y(t0)yy0=Δtz(t0+Δt)z(t0)zz0

使 Δ t → 0 \Delta t \to 0 Δt0那么整个分母就变成了偏导

M 0 M 直线方程 L : x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) M_0M直线方程 L:\dfrac{x-x_0}{x'(t_0)}=\dfrac{y-y_0}{y'(t_0)}=\dfrac{z-z_0}{z'(t_0)} M0M直线方程L:x(t0)xx0=y(t0)yy0=z(t0)zz0

空间平面的一般式表达式为: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0, D = 0 D=0 D=0时,该平面过原点
空间平面的点法式表达式为: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 , ( x 0 , y 0 , z 0 ) A(x-x_0)+B(y-y_0)+C(z-z_0)=0 , (x_0,y_0,z_0) A(xx0)+B(yy0)+C(zz0)=0,(x0,y0,z0)是该平面上的点
包含了四个参数 A , B , C , D , ( A , B , C ) A,B,C,D,(A,B,C) A,B,C,D,(A,B,C)是该平面的法向量。

所以法平面为 x ′ ( t 0 ) ( x − x 0 ) = y ′ ( t 0 ) ( y − y 0 ) = z ′ ( t 0 ) ( z − z 0 ) x'(t_0)(x-x_0)=y'(t_0)(y-y_0)=z'(t_0)(z-z_0) x(t0)(xx0)=y(t0)(yy0)=z(t0)(zz0)


空间曲面的切线和法平面

曲面方程 Σ : F ( x , y , z ) = 0 \Sigma : F(x,y,z) = 0 Σ:F(x,y,z)=0

M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)

任取经过 M 0 M_0 M0点的空间曲线 Γ = { x = x ( t ) y = y ( t ) z = z ( t ) \Gamma = \begin{cases}x = x(t)\\y=y(t)\\z=z(t)\end{cases} Γ= x=x(t)y=y(t)z=z(t)

M 0 ( x ( t 0 ) , y ( t 0 ) , z ( t 0 ) ) M_0(x(t_0),y(t_0),z(t_0)) M0(x(t0),y(t0),z(t0))

一定会有 F ( x ( t ) , y ( t ) , z ( t ) ) = 0 F(x(t),y(t),z(t))=0 F(x(t),y(t),z(t))=0
关于 t t t求导后得到
F x ⋅ x ′ ( t ) + F y ⋅ y ′ ( t ) + F z ⋅ z ′ ( t ) = 0 F_x \cdot x'(t) + F_y\cdot y'(t) + F_z\cdot z'(t) = 0 Fxx(t)+Fyy(t)+Fzz(t)=0

带入 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)
F x ( x 0 , y 0 , z 0 ) ⋅ x ′ ( t ) + F y ( x 0 , y 0 , z 0 ) ⋅ y ′ ( t ) + F z ( x 0 , y 0 , z 0 ) ⋅ z ′ ( t ) = 0 F_x(x_0,y_0,z_0)\cdot x'(t) + F_y(x_0,y_0,z_0)\cdot y'(t) + F_z(x_0,y_0,z_0)\cdot z'(t) = 0 Fx(x0,y0,z0)x(t)+Fy(x0,y0,z0)y(t)+Fz(x0,y0,z0)z(t)=0

用向量表示
( F x , F y , F z ) ⋅ ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) = 0 (F_x,F_y,F_z) \cdot (x'(t_0),y'(t_0),z'(t_0)) = 0 (Fx,Fy,Fz)(x(t0),y(t0),z(t0))=0

结论:
切平面
( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)
法向量是 n ⃗ = ( F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) ) \vec{n} = (F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)) n =(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))
切平面方程为: F x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ( x 0 , y 0 , z 0 ) ( z − z 0 ) F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0) Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)
法线为:
x − x 0 F x = y − y 0 F y = z − z 0 F z \dfrac{x-x_0}{F_x} = \dfrac{y-y_0}{F_y} = \dfrac{z-z_0}{F_z} Fxxx0=Fyyy0=Fzzz0


车灯线光源的优化设计

题目

A题 车灯线光源的优化设计

安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向正前方, 其开口半径36毫米,深度21.6毫米。经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。要求在某一设计规范标准下确定线光源的长度。
该设计规范在简化后可描述如下。在焦点F正前方25米处的A点放置一测试屏,屏与FA垂直,用以测试车灯的反射光。在屏上过A点引出一条与地面相平行的直线,在该直线A点的同侧取B点和C点,使AC=2AB=2.6米。要求C点的光强度不小于某一额定值(可取为1个单位),B点的光强度不小于该额定值的两倍(只须考虑一次反射)。

旋转抛物面求法

对于

{ y = x 2 z = 0 \begin{cases} y = x^2\\ z = 0 \end{cases} {y=x2z=0
y y y 轴旋转
设旋转抛物面上一点为 A ( x 1 , y 1 , z 1 ) A(x_1,y_1,z_1) A(x1,y1,z1)
设在 X O Y XOY XOY平面上的一点 B ( x , y , z ) B(x,y,z) B(x,y,z)使得 y = y 1 y = y_1 y=y1

因为点 A A A和点 B B B距离 y y y轴距离相等,通过两点间距离公式可得
( x 1 − 0 ) 2 + ( y 1 − y 1 ) 2 + ( z 1 − 0 ) 2 = ( x − 0 ) 2 + ( y − y ) 2 + ( z − 0 ) 2 \sqrt{(x1-0)^2+(y_1-y_1)^2+(z_1-0)^2} = \sqrt{(x-0)^2+(y-y)^2+(z-0)^2} (x10)2+(y1y1)2+(z10)2 =(x0)2+(yy)2+(z0)2

得到 x 1 2 + z 1 2 = x 2 + z 2 x_1^2+z_1^2 = x^2+z^2 x12+z12=x2+z2

因为 z = 0 z = 0 z=0(点 B B B X O Y XOY XOY平面上)
又因为 y = x 2 y = x^2 y=x2

所以 x 2 + z 2 = y x^2+z^2=y x2+z2=y

如果 y = 1 2 p x 2 y = \dfrac{1}{2p}x^2 y=2p1x2

那么 x 2 + z 2 = 2 p y x^2+z^2 = 2py x2+z2=2py


确定旋转抛物面方程

得到旋转抛物面方程为 x 2 + z 2 = 2 p y x^2+z^2=2py x2+z2=2py
( 0 , 0 , 0 ) (0,0,0) (0,0,0)和点 ( 0 , 21.6 , 36 ) (0,21.6,36) (0,21.6,36)在旋转抛物面上
带入得到 p = 3 6 2 2 ∗ 21.6 = 30 p = \dfrac{36^2}{2*21.6} = 30 p=221.6362=30

所以方程为 x 2 + z 2 = 60 y x^2+z^2=60y x2+z2=60y

求反射到屏幕的点

假设线光源(焦点) P ( x 2 , y 2 , z 2 ) P(x_2,y_2,z_2) P(x2,y2,z2)射到抛物面上有某一反射点 Q ( x 0 , y 0 , z 0 ) Q(x_0,y_0,z_0) Q(x0,y0,z0)
设反射光线上有一点 D ( x 1 , y 1 , z 1 ) D(x_1,y_1,z_1) D(x1,y1,z1)
连接 P D PD PD经过反射点 Q Q Q的切平面的法线 M ( x 2 + x 1 2 , y 2 + y 1 2 , z 2 + z 1 2 ) M(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2},\dfrac{z_2+z_1}{2}) M(2x2+x1,2y2+y1,2z2+z1)

将点 Q Q Q带入分别对 x , y , z x,y,z x,y,z求偏导,法线方程为

x − x 0 F x = y − y 0 F y = z − z 0 F z \dfrac{x-x_0}{F_x} = \dfrac{y-y_0}{F_y} = \dfrac{z-z_0}{F_z} Fxxx0=Fyyy0=Fzzz0

即法线为:
x − x 0 2 x 0 = y − y 0 − 60 = z − z 0 2 z 0 \dfrac{x-x_0}{2x_0} = \dfrac{y-y_0}{-60} = \dfrac{z-z_0}{2z_0} 2x0xx0=60yy0=2z0zz0

M M M在法线上
则有
x 2 + x 1 2 − x 0 2 x 0 = y 2 + y 1 2 − y 0 − 60 = z 2 + z 1 2 − z 0 2 z 0 \dfrac{\dfrac{x_2+x_1}{2}-x_0}{2x_0} = \dfrac{\dfrac{y_2+y_1}{2}-y_0}{-60} = \dfrac{\dfrac{z_2+z_1}{2}-z_0}{2z_0} 2x02x2+x1x0=602y2+y1y0=2z02z2+z1z0

让公式等于 t t t
x 2 + x 1 2 − x 0 2 x 0 = y 2 + y 1 2 − y 0 − 60 = z 2 + z 1 2 − z 0 2 z 0 = t \dfrac{\dfrac{x_2+x_1}{2}-x_0}{2x_0} = \dfrac{\dfrac{y_2+y_1}{2}-y_0}{-60} = \dfrac{\dfrac{z_2+z_1}{2}-z_0}{2z_0} = t 2x02x2+x1x0=602y2+y1y0=2z02z2+z1z0=t

解得
{ x 1 = 2 x 0 ( 2 t + 1 ) − x 2 y 1 = − 120 t + 2 y 0 − y 2 z 1 = 2 z 0 ( 2 t + 1 ) − z 2 \begin{cases}x_1 = 2x_0(2t+1)-x_2\\ y_1 = -120t+2y_0-y_2\\z_1 = 2z_0(2t+1)-z_2\end{cases} x1=2x0(2t+1)x2y1=120t+2y0y2z1=2z0(2t+1)z2

根据 M Q → \overrightarrow{MQ} MQ P D → \overrightarrow{PD} PD 垂直得到
( x 2 + x 1 2 − x 0 , y 2 + y 1 2 − y 0 , z 2 + z 1 2 − z 0 ) ⋅ ( x 1 − x 2 , y 1 − y 2 , z 1 − z 2 ) = 0 (\dfrac{x_2+x_1}{2}-x_0,\dfrac{y_2+y_1}{2}-y_0,\dfrac{z_2+z_1}{2}-z_0)\cdot (x_1-x_2,y_1-y_2,z_1-z_2) = 0 (2x2+x1x0,2y2+y1y0,2z2+z1z0)(x1x2,y1y2,z1z2)=0

所以
( x 2 + 2 x 0 ( 2 t + 1 ) − x 2 2 − x 0 , y 2 + − 120 t + 2 y 0 − y 2 2 − y 0 , z 2 + 2 z 0 ( 2 t + 1 ) − z 2 2 − z 0 ) ⋅ ( 2 x 0 ( 2 t + 1 ) − x 2 − x 2 , − 120 t + 2 y 0 − y 2 − y 2 , 2 z 0 ( 2 t + 1 ) − z 2 − z 2 ) = 0 (\dfrac{x_2+2x_0(2t+1)-x_2}{2}-x_0,\dfrac{y_2+-120t+2y_0-y_2}{2}-y_0,\dfrac{z_2+2z_0(2t+1)-z_2}{2}-z_0)\cdot (2x_0(2t+1)-x_2-x_2,-120t+2y_0-y_2-y_2,2z_0(2t+1)-z_2-z_2) = 0 (2x2+2x0(2t+1)x2x0,2y2+120t+2y0y2y0,2z2+2z0(2t+1)z2z0)(2x0(2t+1)x2x2,120t+2y0y2y2,2z0(2t+1)z2z2)=0

已知焦点的 z 2 = 0 , y 2 = 15 z_2 = 0 , y_2 = 15 z2=0,y2=15

但发现有 t 2 t^2 t2出现

其实 M Q → \overrightarrow{MQ} MQ 就是法线向量,根据上面求法线为:
x − x 0 2 x 0 = y − y 0 − 60 = z − z 0 2 z 0 \dfrac{x-x_0}{2x_0} = \dfrac{y-y_0}{-60} = \dfrac{z-z_0}{2z_0} 2x0xx0=60yy0=2z0zz0

得到法线向量为 n ⃗ = ( 2 x 0 , − 60 , 2 z 0 ) = ( x 0 , − 30 , z 0 ) \vec{n} = (2x_0,-60,2z_0) = (x_0,-30,z_0) n =(2x0,60,2z0)=(x0,30,z0)

那么关于垂直的等式就变为
( x 0 , − 30 , z 0 ) ⋅ ( x 1 − x 2 , y 1 − y 2 , z 1 − z 2 ) = 0 (x_0,-30,z_0)\cdot (x_1-x_2,y_1-y_2,z_1-z_2) = 0 (x0,30,z0)(x1x2,y1y2,z1z2)=0


( x 0 , − 30 , z 0 ) ⋅ ( 2 x 0 ( 2 t + 1 ) − 2 x 2 , − 120 t + 2 y 0 − 30 , 2 z 0 ( 2 t + 1 ) ) = 0 (x_0,-30,z_0)\cdot (2x_0(2t+1)-2x_2,-120t+2y_0-30,2z_0(2t+1)) = 0 (x0,30,z0)(2x0(2t+1)2x2,120t+2y030,2z0(2t+1))=0

解得
t = 2 x 0 x 2 − 2 x 0 2 + 60 y 0 − 2 z 0 2 − 900 4 x 0 2 + 4 z 0 2 + 3600 t = \dfrac{2x_0x_2-2x_0^2+60y_0-2z_0^2-900}{4x_0^2+4z_0^2+3600} t=4x02+4z02+36002x0x22x02+60y02z02900

所以解得点 D ( x 1 , y 1 , z 1 ) D(x_1,y_1,z_1) D(x1,y1,z1)
{ x 1 = 2 x 0 ( 2 t + 1 ) − x 2 y 1 = − 120 t + 2 y 0 − y 2 z 1 = 2 z 0 ( 2 t + 1 ) − z 2 \begin{cases}x_1 = 2x_0(2t+1)-x_2\\ y_1 = -120t+2y_0-y_2\\z_1 = 2z_0(2t+1)-z_2\end{cases} x1=2x0(2t+1)x2y1=120t+2y0y2z1=2z0(2t+1)z2

已知向量 Q D → = ( x 3 , y 3 , z 3 ) \overrightarrow{QD} = (x_3,y_3,z_3) QD =(x3,y3,z3),求向量 Q D → \overrightarrow{QD} QD Y = 25015 Y=25015 Y=25015平面上的交点 G ( x 4 , y 4 , z 4 ) G(x_4,y_4,z_4) G(x4,y4,z4),其中
{ x 3 = x 1 − x 0 y 3 = y 1 − y 0 z 3 = z 1 − z 0 \begin{cases}x_3 = x_1 - x_0\\ y_3 = y_1 - y_0\\z_3 = z_1 - z_0\end{cases} x3=x1x0y3=y1y0z3=z1z0

Q D : x − x 0 x 3 = y − y 0 y 3 = z − z 0 z 3 {QD} :\dfrac{x-x_0}{x_3} = \dfrac{y-y_0}{y_3} = \dfrac{z-z_0}{z_3} QD:x3xx0=y3yy0=z3zz0

带入点 G ( x 4 , 25015 , z 4 ) G(x_4,25015,z_4) G(x4,25015,z4)即可求解

  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值