A:1的个数
输入一个int型的正整数,计算出该int型数据在内存中存储时1的个数。
输入
输入一个整数(int类型)。
输出
这个数转换成2进制后,输出1的个数。
样例输入
5
样例输出
2
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=5e2+5,M=1e5+5,INF=0x3f3f3f3f;
int n,cnt;
int lowbit(int x)
{
return x&-x;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cin>>n;
while(n){
n-=lowbit(n);
cnt++;
}
cout<<cnt<<'\n';
return 0;
}
B:又一道简单题
输入一个四个数字组成的整数 n,你的任务是数一数有多少种方法,恰好修改一个数字,把它 变成一个完全平方数(不能把首位修改成 0)。比如 n=7844,有两种方法:3844=622 和 7744=882。
输入
输入一个四个数字组成的整数 n,你的任务是数一数有多少种方法,恰好修改一个数字,把它 变成一个完全平方数(不能把首位修改成 0)。比如 n=7844,有两种方法:3844=622 和 7744=882。
输出
输入第一行为整数 T (1<=T<=1000),即测试数据的组数,以后每行包含一个整数 n (1000<=n<=9999)。
样例输入
2
7844
9121
样例输出
Case 1:2
Case 2:0
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e4+5,M=1e5+5,INF=0x3f3f3f3f;
int t,cnt,cn;
string s,s1,s2,ss;
bool st[N];
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
for(int i=1;i*i<10000;i++) st[i*i]=true;
cin>>t;
while(t--){
cnt=0;
cin>>s;
for(int i=1;i<=4;i++){
s1=s.substr(0,i-1),s2=s.substr(i);
for(int j=0;j<10;j++){
ss=s1+to_string(j)+s2;
if((i==1&&j==0)||ss==s) continue;
if(st[atoi(ss.c_str())]) cnt++;
}
}
cout<<"Case "<<++cn<<": "<<cnt<<'\n';
}
return 0;
}
C:安置路灯
小Q正在给一条长度为n的道路设计路灯安置方案。为了让问题更简单,小Q把道路视为n个方格,需要照亮的地方用'.'表示, 不需要照亮的障碍物格子用'X'表示。小Q现在要在道路上设置一些路灯, 对于安置在pos位置的路灯, 这盏路灯可以照亮pos - 1, pos, pos + 1这三个位置。小Q希望能安置尽量少的路灯照亮所有'.'区域, 希望你能帮他计算一下最少需要多少盏路灯。
输入
输入的第一行包含一个正整数t(1 <= t <= 1000), 表示测试用例数 接下来每两行一个测试数据, 第一行一个正整数n(1 <= n <= 1000),表示道路的长度。 第二行一个字符串s表示道路的构造,只包含'.'和'X'。
输出
对于每个测试用例, 输出一个正整数表示最少需要多少盏路灯。
样例输入
2
3
.X.
11
...XX....XX
样例输出
1
3
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e4+5,M=1e5+5,INF=0x3f3f3f3f;
int t,n,cnt;
string s;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cin>>t;
while(t--){
cin>>n>>s;
cnt=0;
for(int i=0;s[i];i++)
if(s[i]=='.'){
cnt++;
if(i+1<s.size()) s[i+1]='X';
if(i+2<s.size()) s[i+2]='X';
}
cout<<cnt<<'\n';
}
return 0;
}
D:单源最短路径问题
编程实现Dijkstra算法,求一个有向加权图中,从源点出发到其他各个顶点的最短路径。
输入
第1行第1个值表示顶点个数,第2个值表示边个数;第2行开始为边(两个顶点,边的起点和终点)及权重。
输出
顶点0到每一个顶点的最短路径长度。
样例输入
5 7
0 1 10
0 3 30
0 4 100
1 2 50
2 4 10
3 2 20
3 4 60
样例输出
0 10 50 30 60
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1e3+5,M=1e5+5,INF=0x3f3f3f3f;
int n,m;
int dist[N],g[N][N];
int u,v,c;
bool st[N];
void dijkstra()
{
memset(dist,0x3f,sizeof dist);
memset(st,false,sizeof st);
dist[0]=0;
for(int i=0;i<n;i++){
int t=-1;
for(int j=0;j<n;j++) if(!st[j]&&(t==-1||dist[t]>dist[j])) t=j;
st[t]=true;
for(int j=0;j<n;j++) if(!st[j]) dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
while(cin>>n>>m){
memset(g,0x3f,sizeof g);
while(m--){
cin>>u>>v>>c;
g[u][v]=c;
}
dijkstra();
for(int i=0;i<n;i++) cout<<dist[i]<<' ';
cout<<'\n';
}
return 0;
}
E:ABC + DEF = GHI
用1, 2, 3...9 这九个数字组成一个数学公式,满足:ABC + DEF = GHI,每个数字只能出现一次,编写程序输出所有的组合。
输入
无
输出
输出所有的 ABC + DEF = GHI,
每行一条数据,格式为ABC+DEF=GHI
输出结果按照ABC升序排列,如果ABC相同,则按照DEF升序排列。
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e3+5,M=1e5+5,INF=0x3f3f3f3f;
int a[9]={1,2,3,4,5,6,7,8,9};
int abc,def,ghi;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
do
{
abc=a[0]*100+a[1]*10+a[2];
def=a[3]*100+a[4]*10+a[5];
ghi=a[6]*100+a[7]*10+a[8];
if(abc+def==ghi) cout<<abc<<"+"<<def<<"="<<ghi<<'\n';
}while(next_permutation(a,a+9));
return 0;
}
F:油田问题
输入一个m行n列的字符矩阵,统计字符“@”组成多少个八连块。如果两个字符“@”所在的格子相邻(横、竖或者对角线方向),即属于同一个八连块。
输入
多组输入
输入行数m,以及列数n。
然后输入*和@
1<=n,m<=100
输出
联通块个数
样例输入
5 5
****@
*@@*@
*@**@
@@@*@
@@**@
样例输出
2
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e2+5,M=1e5+5,INF=0x3f3f3f3f;
int n,m,cnt;
char g[N][N];
int dx[8] = { 0,1,0,-1,1,1,-1,-1 };
int dy[8] = { 1,0,-1,0,1,-1,1,-1 };
void dfs(int w,int e)
{
g[w][e]='.';
for(int i=0;i<8;i++){
int x=w+dx[i],y=e+dy[i];
if(x>=1&&x<=n&&y>=1&&y<=m&&g[x][y]=='@') dfs(x,y);
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
while(cin>>n>>m){
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) cin>>g[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(g[i][j]=='@') {
cnt++;
dfs(i,j);
}
cout<<cnt<<'\n';
cnt=0;
}
return 0;
}
G:迷宫问题(回溯法求解)
输入一个n×n的迷宫,定义左上角为起点,右下角为终点,寻找一条从起点到终点的路径
输入
多组输入
每组输入第一行有两个整数n,m表示迷宫尺寸
后跟n行,每行m个字符0表示道路,1表示墙壁
1<=n,m<=10
输出
输出地图,用2表示路径
多个答案输出任意一种即可
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e1+5,M=1e5+5,INF=0x3f3f3f3f;
int n,m,cnt;
int g[N][N];
bool st[N][N];
int dx[8] = { 0,1,0,-1,1,1,-1,-1 };
int dy[8] = { 1,0,-1,0,1,-1,1,-1 };
int dfs(int w,int e)
{
if(w==n&&e==m) {
g[w][e]=2;
return 2;
}
for(int i=0;i<4;i++){
int x=w+dx[i],y=e+dy[i];
if(x>=1&&x<=n&&y>=1&&y<=m&&!st[x][y]&&g[x][y]==0){
st[w][e]=true;
if(dfs(x,y)){
g[w][e]=2;
st[w][e]=false;
return 2;
}
st[w][e]=false;
}
}
return 0;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
while(cin>>n>>m){
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) cin>>g[i][j];
dfs(1,1);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++) cout<<g[i][j]<<' ';
cout<<'\n';
}
}
return 0;
}
H:低碳出行
为了做一项关于“爱护环境,从小做起”的公益调查,新司机小明决定开老爸的车从家中前往X市第一小学。从小明家到X市第一小学的交通网络图一共有n个顶点(包括起点小明家和终点X市第一小学)和m条无向边。每条边都有一个碳排放量和一个行驶时间(单位:分钟)。
现在需要你编写一个程序帮助小明实现低碳出行,即寻找一条碳排放量最少的路径,一条路径的碳排放量等于该路径上所有边的碳排放量之和。如果存在两条碳排放量相同的路径,则找出总的行驶时间最少的路径,并输出该路径的总碳排放量和总的时间(分钟)。
输入
单组输入。
在每组输入中,第1行包含两个正整数n和m,分别表示顶点数和边数(n<=1000且m<=1000)。其中,第1号顶点为起点(小明家),第n号顶点为终点(X市第一小学)。两个正整数之间用空格隔开。
第2行到第m+1行表示m条边的信息,每一行包含四个正整数。第1个正整数和第2个正整数表示一条边所对应的两个顶点的编号,第3个正整数表示该边对应的碳排放量,第4个正整数表示该边所对应的行驶时间(单位:分钟)。四个正整数两两之间用空格隔开。
输出
对于每组输入,输出碳排放量最少的路径的总碳排放量和总时间(分钟),如果存在两条碳排放量相同的路径,则输出总的行驶时间最少的路径的总碳排放量和总时间。
样例输入
3 3
1 2 5 5
1 3 8 11
2 3 3 5
样例输出
8 10
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=1e3+5,M=1e5+5,INF=0x3f3f3f3f;
int n,m;
int u,v,c,t;
int gc[N][N],gt[N][N],dist[N],ds[N];
bool st[N];
void dijkstra()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
ds[1]=0;
for(int i=0;i<n;i++){
int t=-1;
for(int j=1;j<=n;j++) if(!st[j]&&(t==-1||dist[t]>dist[j])) t=j;
st[t]=true;
for(int j=1;j<=n;j++) if(!st[j]){
if(dist[j]>dist[t]+gc[t][j]){
dist[j]=dist[t]+gc[t][j];
ds[j]=ds[t]+gt[t][j];
}else if(dist[j]==dist[t]+gc[t][j]) ds[j]=min(ds[j],ds[t]+gt[t][j]);
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
memset(gt,0x3f,sizeof gt);
memset(gc,0x3f,sizeof gc);
cin>>n>>m;
while(m--){
cin>>u>>v>>c>>t;
gc[u][v]=gc[v][u]=c;
gt[u][v]=gt[v][u]=t;
}
dijkstra();
cout<<dist[n]<<' '<<ds[n]<<'\n';
return 0;
}