题目
要求找到一个最小的V,使得在从1到V的范围内,满足以下条件:
从这个范围中选取cnt1个数给A,选取cnt2个数给B。
A不要x的倍数,B不要y的倍数。
x和y都是质数。
一个数不能同时给A和B。
解决方案
def check(num):
if num - num // (x * y) < cnt1 + cnt2:
return False
if num - num // x < cnt1:
return False
if num - num // y < cnt2:
return False
return True
def main():
global cnt1, cnt2, x, y
cnt1, cnt2, x, y = map(int, input().split())
l, r = 1, 2 * 10**9
ans = 0
while l <= r:
mid = l + (r - l) // 2
if check(mid):
r = mid - 1
ans = mid
else:
l = mid + 1
print(ans)
if __name__ == "__main__":
main()
(1)这里的话,其实最核心的一个思路就是每次去检查这3种情况是否是成立,因为X和y它都是质数,所以选择的这个集合里面肯定不能包含它的质数以及它的最大公倍数和最大公倍数的倍数。
这里呢在 Check函数里面我们的第一个条件就是,在已经去掉X和y的最大公倍数以及它的倍数的情况下,还能满足你的需求。如果说不满足我返回一个false
那么整体满足,各自也要满足。下面的话就是分别对a和B,它里面的条件不包含x以及x倍数,不包含y以及y倍数,如果说以上3种条件都是不满足的,那么我返回一个true,表示我找到了一个最佳的结果,
(2)在main函数里面的这个二分查找,这里面的二分查找主要是从所有的数据里面去找不满足这3种条件的一个解,因为每次查找都是二分,比如说我在最后一次查找的时候。那我肯定是左半部分不满足,因为他左半部分被这3种条件给拦截了,那么右半部分的话就是这3种情况条件都是不满足的。
不满足的话,那就是我的姐就在这里面,所以我的右半部分就是M获取mid。这里特别要注意