题目描述:
X 星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。X 星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
X 星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的 2 楼。
如果手机从第 7 层扔下去没摔坏,但第 8 层摔坏了,则手机耐摔指数 = 7。
特别地,如果手机从第 1 层扔下去就坏了,则耐摔指数 = 0。
如果到了塔的最高层第 n层扔没摔坏,则耐摔指数 = n。
为了减少测试次数,从每个厂家抽样 3 部手机参加测试。
如果已知了测试塔的高度,并且采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
输入描述:
一个整数 n,表示测试塔的高度。
输出描述:
输出一个整数,表示最多测试多少次。
输入输出样例:
输入:3
输出:2
样例解释:
手机 a 从 2 楼扔下去,坏了,就把 b 手机从 1 楼扔;否则 a手机继续 3 层扔下。
标签:["2018","省赛","递推"]
思路:
最优策略是二分,最坏情况是摔坏了,
f1[i]为1部手机 摔i次最大能测出的耐摔指数
f2[i]为2部手机 摔i次最大能测出的耐摔指数,最坏情况是第1次就摔坏了,那么就只有1部手机摔i-1次
f3[i]为3部手机 摔i次最大能测出的耐摔指数,最坏情况是第1次就摔坏了,那么就只有2部手机摔i-1次
#include<iostream>
using namespace std;
const int N=1e4+10;
int f1[N],f2[N],f3[N];
int n;
int main(){
cin>>n;
for(int i=1;;i++){
f1[i]=i;
f2[i]=f2[i-1]+1+f1[i-1];
f3[i]=f3[i-1]+1+f2[i-1];
if(f3[i]>n){
cout<<i;
break;
}
}
return 0;
}
总结:
递推不在乎怎么来,之关心直接上一步是什么