考研数学二:函数、极限与连续知识架构与易错点全解析

知识架构表

模块核心知识点高频考点关联公式与定理示例
函数定义域/值域、奇偶性/周期性/单调性、复合函数、反函数、初等函数函数性质综合判断、复合函数定义域、分段函数分析奇函数 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)
周期函数 f ( x + T ) = f ( x ) f(x+T) = f(x) f(x+T)=f(x)
单调性:若 x 1 < x 2 ⇒ f ( x 1 ) ≤ f ( x 2 ) x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2) x1<x2f(x1)f(x2)
极限极限定义、四则运算法则、夹逼准则、单调有界定理、两个重要极限、无穷小比较等价无穷小替换、泰勒展开应用、数列极限与函数极限转换、极限存在性证明第一重要极限 lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = 1 limx0xsinx=1
第二重要极限 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e limx(1+x1)x=e
无穷小比较:若 lim ⁡ α β = 0 \lim \frac{\alpha}{\beta} = 0 limβα=0,则 α = o ( β ) \alpha = o(\beta) α=o(β)
连续连续定义、间断点分类(可去/跳跃/无穷/振荡)、闭区间连续函数性质连续性判断与参数求解、间断点分类综合题、介值定理应用连续定义 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limxx0f(x)=f(x0)
介值定理:若 f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)f(b)<0,则 ∃ c ∈ ( a , b ) \exists c \in (a,b) c(a,b) 使 f ( c ) = 0 f(c)=0 f(c)=0
跳跃间断点 lim ⁡ x → x 0 + f ( x ) ≠ lim ⁡ x → x 0 − f ( x ) \lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x) limxx0+f(x)=limxx0f(x)
综合应用渐近线分析、极限与连续的几何意义、函数有界性证明渐近线求解、极限存在性与函数性质综合题、一致连续性分析水平渐近线 y = A y = A y=A(当 lim ⁡ x → ∞ f ( x ) = A \lim_{x \to \infty} f(x) = A limxf(x)=A
斜渐近线 y = k x + b y = kx + b y=kx+b,其中 k = lim ⁡ x → ∞ f ( x ) x k = \lim_{x \to \infty} \frac{f(x)}{x} k=limxxf(x) b = lim ⁡ x → ∞ [ f ( x ) − k x ] b = \lim_{x \to \infty} [f(x)-kx] b=limx[f(x)kx]
一致连续 ∀ ϵ > 0 , ∃ δ > 0 \forall \epsilon > 0, \exists \delta > 0 ϵ>0,δ>0,使 $

公式说明

  1. 奇偶性

    • 奇函数: f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)(如图像关于原点对称)
    • 偶函数: f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x)(如图像关于 y y y 轴对称)
  2. 两个重要极限

    • lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = 1 limx0xsinx=1
    • lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e limx0(1+x)x1=e lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e limx(1+x1)x=e
  3. 无穷小比较
    x → 0 x \to 0 x0 时,常见等价无穷小:

    • sin ⁡ x ∼ x \sin x \sim x sinxx
    • ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x
    • e x − 1 ∼ x e^x - 1 \sim x ex1x
    • 1 − cos ⁡ x ∼ 1 2 x 2 1 - \cos x \sim \frac{1}{2}x^2 1cosx21x2
  4. 间断点分类公式

    • 可去间断点 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x) 存在但不等于 f ( x 0 ) f(x_0) f(x0)
    • 跳跃间断点 lim ⁡ x → x 0 + f ( x ) ≠ lim ⁡ x → x 0 − f ( x ) \lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x) limxx0+f(x)=limxx0f(x)
    • 无穷间断点 lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x \to x_0} f(x) = \infty limxx0f(x)=
    • 振荡间断点 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x) 振荡且不存在(如 f ( x ) = sin ⁡ 1 x f(x) = \sin\frac{1}{x} f(x)=sinx1 x = 0 x=0 x=0 处)

一、函数模块易错点与考题预测

易错点1:复合函数定义域嵌套错误

例题:设 f ( x ) = ln ⁡ ( 2 − x ) f(x) = \sqrt{\ln(2-x)} f(x)=ln(2x) ,求定义域。
错误:仅考虑 ln ⁡ ( 2 − x ) ≥ 0 \ln(2-x) \geq 0 ln(2x)0 而忽略对数内部需严格大于0。
解析
需满足:
{ 2 − x > 0 ln ⁡ ( 2 − x ) ≥ 0 ⇒ { x < 2 2 − x ≥ 1 ⇒ x ≤ 1 \begin{cases} 2 - x > 0 \\ \ln(2 - x) \geq 0 \end{cases} \Rightarrow \begin{cases} x < 2 \\ 2 - x \geq 1 \end{cases} \Rightarrow x \leq 1 {2x>0ln(2x)0{x<22x1x1
正解:定义域为 ( − ∞ , 1 ] (-\infty, 1] (,1]


易错点2:奇偶性符号判断失误

例题(预测题):判断 f ( x ) = e x − e − x + cos ⁡ x f(x) = e^x - e^{-x} + \cos x f(x)=exex+cosx 的奇偶性。
解析
逐项分析:
f ( − x ) = e − x − e x + cos ⁡ ( − x ) = − ( e x − e − x ) + cos ⁡ x = − f ( x ) + 2 cos ⁡ x \begin{aligned} f(-x) &= e^{-x} - e^{x} + \cos(-x) \\ &= - (e^x - e^{-x}) + \cos x \\ &= -f(x) + 2\cos x \end{aligned} f(x)=exex+cos(x)=(exex)+cosx=f(x)+2cosx
结论:既非奇函数也非偶函数(错误答案常见为“奇函数”)。


二、极限模块易错点与考题预测

易错点3:泰勒展开截断误差

例题(预测题):求 lim ⁡ x → 0 cos ⁡ x − e − x 2 / 2 x 4 \lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4} x0limx4cosxex2/2
解析
展开到 x 4 x^4 x4 项:
cos ⁡ x = 1 − x 2 2 + x 4 24 + o ( x 4 ) e − x 2 / 2 = 1 − x 2 2 + x 4 8 + o ( x 4 ) \begin{aligned} \cos x &= 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) \\ e^{-x^2/2} &= 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4) \end{aligned} cosxex2/2=12x2+24x4+o(x4)=12x2+8x4+o(x4)
代入得:
lim ⁡ x → 0 ( 1 − x 2 2 + x 4 24 ) − ( 1 − x 2 2 + x 4 8 ) x 4 = − 1 12 \lim_{x \to 0} \frac{\left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{8}\right)}{x^4} = -\frac{1}{12} x0limx4(12x2+24x4)(12x2+8x4)=121
答案 − 1 12 -\frac{1}{12} 121


易错点4:夹逼准则应用不当

例题(2015年真题):求 lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) \lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \right) nlim(n2+1 1+n2+2 1++n2+n 1)
解析
利用夹逼准则:
n n 2 + n ≤ S n ≤ n n 2 + 1 \frac{n}{\sqrt{n^2+n}} \leq S_n \leq \frac{n}{\sqrt{n^2+1}} n2+n nSnn2+1 n
计算极限:
lim ⁡ n → ∞ n n 2 + n = lim ⁡ n → ∞ 1 1 + 1 n = 1 \lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n}}} = 1 nlimn2+n n=nlim1+n1 1=1
答案:1。


三、连续模块易错点与考题预测

易错点5:分段函数连续性参数求解

例题(预测题):设 f ( x ) = { sin ⁡ ( a x ) x x ≠ 0 b x = 0 f(x) = \begin{cases} \frac{\sin(ax)}{x} & x \neq 0 \\ b & x = 0 \end{cases} f(x)={xsin(ax)bx=0x=0 连续,求 a , b a, b a,b
解析
利用重要极限:
lim ⁡ x → 0 sin ⁡ ( a x ) x = a ⇒ b = a \lim_{x \to 0} \frac{\sin(ax)}{x} = a \Rightarrow b = a x0limxsin(ax)=ab=a
结论 a = b a = b a=b


易错点6:振荡间断点判断

例题(2003年真题):分析 f ( x ) = sin ⁡ ( 1 x ) f(x) = \sin\left(\frac{1}{x}\right) f(x)=sin(x1) x = 0 x=0 x=0 处的连续性。
解析
x → 0 x \to 0 x0 时, sin ⁡ ( 1 x ) \sin\left(\frac{1}{x}\right) sin(x1) [ − 1 , 1 ] [-1,1] [1,1] 振荡无限次,极限不存在。
结论 x = 0 x=0 x=0 为振荡间断点。


四、历年真题精选(2020年前)

真题1(2010年)

题目:求 lim ⁡ x → 0 1 + 2 x − e x + 1 2 x 2 x 3 \lim_{x \to 0} \frac{\sqrt{1+2x} - e^x + \frac{1}{2}x^2}{x^3} x0limx31+2x ex+21x2
解析
泰勒展开至 x 3 x^3 x3
1 + 2 x = 1 + x − x 2 2 + x 3 2 + o ( x 3 ) e x = 1 + x + x 2 2 + x 3 6 + o ( x 3 ) \begin{aligned} \sqrt{1+2x} &= 1 + x - \frac{x^2}{2} + \frac{x^3}{2} + o(x^3) \\ e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) \end{aligned} 1+2x ex=1+x2x2+2x3+o(x3)=1+x+2x2+6x3+o(x3)
代入得极限 1 3 \frac{1}{3} 31


真题2(2008年)

题目:设 f ( x ) = x 2 − x ∣ x ∣ ( x − 1 ) f(x) = \frac{x^2 - x}{|x|(x-1)} f(x)=x(x1)x2x,求其间断点及类型。
解析
化简函数:
f ( x ) = { x ( x − 1 ) x ( x − 1 ) = 1 x > 0 且 x ≠ 1 x ( x − 1 ) − x ( x − 1 ) = − 1 x < 0 f(x) = \begin{cases} \frac{x(x-1)}{x(x-1)} = 1 & x > 0 \text{且} x \neq 1 \\ \frac{x(x-1)}{-x(x-1)} = -1 & x < 0 \end{cases} f(x)={x(x1)x(x1)=1x(x1)x(x1)=1x>0x=1x<0
结论 x = 0 x=0 x=0 为跳跃间断点, x = 1 x=1 x=1 为可去间断点。


五、预测考题与解析

预测题1(复合函数与极限综合)

题目:设 f ( x ) = { e 1 / x x ≠ 0 0 x = 0 f(x) = \begin{cases} e^{1/x} & x \neq 0 \\ 0 & x = 0 \end{cases} f(x)={e1/x0x=0x=0,求 lim ⁡ x → 0 f ( f ( x ) ) \lim_{x \to 0} f(f(x)) x0limf(f(x))
解析
分左右极限:
lim ⁡ x → 0 + f ( x ) = + ∞ ⇒ lim ⁡ x → 0 + f ( f ( x ) ) = lim ⁡ y → + ∞ e y = + ∞ lim ⁡ x → 0 − f ( x ) = 0 ⇒ lim ⁡ x → 0 − f ( f ( x ) ) = f ( 0 ) = 0 \begin{aligned} \lim_{x \to 0^+} f(x) &= +\infty \Rightarrow \lim_{x \to 0^+} f(f(x)) = \lim_{y \to +\infty} e^y = +\infty \\ \lim_{x \to 0^-} f(x) &= 0 \Rightarrow \lim_{x \to 0^-} f(f(x)) = f(0) = 0 \end{aligned} x0+limf(x)x0limf(x)=+x0+limf(f(x))=y+limey=+=0x0limf(f(x))=f(0)=0
结论:极限不存在。

预测题2(一致连续性证明)

题目:证明 f ( x ) = x sin ⁡ 1 x f(x) = x \sin \frac{1}{x} f(x)=xsinx1 ( 0 , 1 ) (0,1) (0,1) 上不一致连续。
解析
取数列 x n = 1 2 n π x_n = \frac{1}{2n\pi} xn=21 y n = 1 2 n π + π / 2 y_n = \frac{1}{2n\pi + \pi/2} yn=2+π/21,则:
∣ f ( x n ) − f ( y n ) ∣ = ∣ 1 2 n π ⋅ 0 − 1 2 n π + π / 2 ⋅ 1 ∣ → 1 π / 2 ≠ 0 |f(x_n) - f(y_n)| = \left| \frac{1}{2n\pi} \cdot 0 - \frac{1}{2n\pi + \pi/2} \cdot 1 \right| \to \frac{1}{\pi/2} \neq 0 f(xn)f(yn)= 2102+π/211 π/21=0
结论:不满足一致连续定义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

竹木有心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值