知识架构表
模块 | 核心知识点 | 高频考点 | 关联公式与定理示例 |
---|---|---|---|
函数 | 定义域/值域、奇偶性/周期性/单调性、复合函数、反函数、初等函数 | 函数性质综合判断、复合函数定义域、分段函数分析 | 奇函数:
f
(
−
x
)
=
−
f
(
x
)
f(-x) = -f(x)
f(−x)=−f(x) 周期函数: f ( x + T ) = f ( x ) f(x+T) = f(x) f(x+T)=f(x) 单调性:若 x 1 < x 2 ⇒ f ( x 1 ) ≤ f ( x 2 ) x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2) x1<x2⇒f(x1)≤f(x2) |
极限 | 极限定义、四则运算法则、夹逼准则、单调有界定理、两个重要极限、无穷小比较 | 等价无穷小替换、泰勒展开应用、数列极限与函数极限转换、极限存在性证明 | 第一重要极限:
lim
x
→
0
sin
x
x
=
1
\lim_{x \to 0} \frac{\sin x}{x} = 1
limx→0xsinx=1 第二重要极限: lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e limx→∞(1+x1)x=e 无穷小比较:若 lim α β = 0 \lim \frac{\alpha}{\beta} = 0 limβα=0,则 α = o ( β ) \alpha = o(\beta) α=o(β) |
连续 | 连续定义、间断点分类(可去/跳跃/无穷/振荡)、闭区间连续函数性质 | 连续性判断与参数求解、间断点分类综合题、介值定理应用 | 连续定义:
lim
x
→
x
0
f
(
x
)
=
f
(
x
0
)
\lim_{x \to x_0} f(x) = f(x_0)
limx→x0f(x)=f(x0) 介值定理:若 f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)⋅f(b)<0,则 ∃ c ∈ ( a , b ) \exists c \in (a,b) ∃c∈(a,b) 使 f ( c ) = 0 f(c)=0 f(c)=0 跳跃间断点: lim x → x 0 + f ( x ) ≠ lim x → x 0 − f ( x ) \lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x) limx→x0+f(x)=limx→x0−f(x) |
综合应用 | 渐近线分析、极限与连续的几何意义、函数有界性证明 | 渐近线求解、极限存在性与函数性质综合题、一致连续性分析 | 水平渐近线:
y
=
A
y = A
y=A(当
lim
x
→
∞
f
(
x
)
=
A
\lim_{x \to \infty} f(x) = A
limx→∞f(x)=A) 斜渐近线: y = k x + b y = kx + b y=kx+b,其中 k = lim x → ∞ f ( x ) x k = \lim_{x \to \infty} \frac{f(x)}{x} k=limx→∞xf(x), b = lim x → ∞ [ f ( x ) − k x ] b = \lim_{x \to \infty} [f(x)-kx] b=limx→∞[f(x)−kx] 一致连续: ∀ ϵ > 0 , ∃ δ > 0 \forall \epsilon > 0, \exists \delta > 0 ∀ϵ>0,∃δ>0,使 $ |
公式说明
-
奇偶性
- 奇函数: f ( − x ) = − f ( x ) f(-x) = -f(x) f(−x)=−f(x)(如图像关于原点对称)
- 偶函数: f ( − x ) = f ( x ) f(-x) = f(x) f(−x)=f(x)(如图像关于 y y y 轴对称)
-
两个重要极限
- lim x → 0 sin x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = 1 limx→0xsinx=1
- lim x → 0 ( 1 + x ) 1 x = e \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e limx→0(1+x)x1=e 或 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e limx→∞(1+x1)x=e
-
无穷小比较
当 x → 0 x \to 0 x→0 时,常见等价无穷小:- sin x ∼ x \sin x \sim x sinx∼x
- ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x
- e x − 1 ∼ x e^x - 1 \sim x ex−1∼x
- 1 − cos x ∼ 1 2 x 2 1 - \cos x \sim \frac{1}{2}x^2 1−cosx∼21x2
-
间断点分类公式
- 可去间断点: lim x → x 0 f ( x ) \lim_{x \to x_0} f(x) limx→x0f(x) 存在但不等于 f ( x 0 ) f(x_0) f(x0)
- 跳跃间断点: lim x → x 0 + f ( x ) ≠ lim x → x 0 − f ( x ) \lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x) limx→x0+f(x)=limx→x0−f(x)
- 无穷间断点: lim x → x 0 f ( x ) = ∞ \lim_{x \to x_0} f(x) = \infty limx→x0f(x)=∞
- 振荡间断点: lim x → x 0 f ( x ) \lim_{x \to x_0} f(x) limx→x0f(x) 振荡且不存在(如 f ( x ) = sin 1 x f(x) = \sin\frac{1}{x} f(x)=sinx1 在 x = 0 x=0 x=0 处)
一、函数模块易错点与考题预测
易错点1:复合函数定义域嵌套错误
例题:设
f
(
x
)
=
ln
(
2
−
x
)
f(x) = \sqrt{\ln(2-x)}
f(x)=ln(2−x),求定义域。
错误:仅考虑
ln
(
2
−
x
)
≥
0
\ln(2-x) \geq 0
ln(2−x)≥0 而忽略对数内部需严格大于0。
解析:
需满足:
{
2
−
x
>
0
ln
(
2
−
x
)
≥
0
⇒
{
x
<
2
2
−
x
≥
1
⇒
x
≤
1
\begin{cases} 2 - x > 0 \\ \ln(2 - x) \geq 0 \end{cases} \Rightarrow \begin{cases} x < 2 \\ 2 - x \geq 1 \end{cases} \Rightarrow x \leq 1
{2−x>0ln(2−x)≥0⇒{x<22−x≥1⇒x≤1
正解:定义域为
(
−
∞
,
1
]
(-\infty, 1]
(−∞,1]。
易错点2:奇偶性符号判断失误
例题(预测题):判断
f
(
x
)
=
e
x
−
e
−
x
+
cos
x
f(x) = e^x - e^{-x} + \cos x
f(x)=ex−e−x+cosx 的奇偶性。
解析:
逐项分析:
f
(
−
x
)
=
e
−
x
−
e
x
+
cos
(
−
x
)
=
−
(
e
x
−
e
−
x
)
+
cos
x
=
−
f
(
x
)
+
2
cos
x
\begin{aligned} f(-x) &= e^{-x} - e^{x} + \cos(-x) \\ &= - (e^x - e^{-x}) + \cos x \\ &= -f(x) + 2\cos x \end{aligned}
f(−x)=e−x−ex+cos(−x)=−(ex−e−x)+cosx=−f(x)+2cosx
结论:既非奇函数也非偶函数(错误答案常见为“奇函数”)。
二、极限模块易错点与考题预测
易错点3:泰勒展开截断误差
例题(预测题):求
lim
x
→
0
cos
x
−
e
−
x
2
/
2
x
4
\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4}
x→0limx4cosx−e−x2/2。
解析:
展开到
x
4
x^4
x4 项:
cos
x
=
1
−
x
2
2
+
x
4
24
+
o
(
x
4
)
e
−
x
2
/
2
=
1
−
x
2
2
+
x
4
8
+
o
(
x
4
)
\begin{aligned} \cos x &= 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) \\ e^{-x^2/2} &= 1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4) \end{aligned}
cosxe−x2/2=1−2x2+24x4+o(x4)=1−2x2+8x4+o(x4)
代入得:
lim
x
→
0
(
1
−
x
2
2
+
x
4
24
)
−
(
1
−
x
2
2
+
x
4
8
)
x
4
=
−
1
12
\lim_{x \to 0} \frac{\left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{8}\right)}{x^4} = -\frac{1}{12}
x→0limx4(1−2x2+24x4)−(1−2x2+8x4)=−121
答案:
−
1
12
-\frac{1}{12}
−121。
易错点4:夹逼准则应用不当
例题(2015年真题):求
lim
n
→
∞
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
\lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \right)
n→∞lim(n2+11+n2+21+⋯+n2+n1)。
解析:
利用夹逼准则:
n
n
2
+
n
≤
S
n
≤
n
n
2
+
1
\frac{n}{\sqrt{n^2+n}} \leq S_n \leq \frac{n}{\sqrt{n^2+1}}
n2+nn≤Sn≤n2+1n
计算极限:
lim
n
→
∞
n
n
2
+
n
=
lim
n
→
∞
1
1
+
1
n
=
1
\lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n}}} = 1
n→∞limn2+nn=n→∞lim1+n11=1
答案:1。
三、连续模块易错点与考题预测
易错点5:分段函数连续性参数求解
例题(预测题):设
f
(
x
)
=
{
sin
(
a
x
)
x
x
≠
0
b
x
=
0
f(x) = \begin{cases} \frac{\sin(ax)}{x} & x \neq 0 \\ b & x = 0 \end{cases}
f(x)={xsin(ax)bx=0x=0 连续,求
a
,
b
a, b
a,b。
解析:
利用重要极限:
lim
x
→
0
sin
(
a
x
)
x
=
a
⇒
b
=
a
\lim_{x \to 0} \frac{\sin(ax)}{x} = a \Rightarrow b = a
x→0limxsin(ax)=a⇒b=a
结论:
a
=
b
a = b
a=b。
易错点6:振荡间断点判断
例题(2003年真题):分析
f
(
x
)
=
sin
(
1
x
)
f(x) = \sin\left(\frac{1}{x}\right)
f(x)=sin(x1) 在
x
=
0
x=0
x=0 处的连续性。
解析:
当
x
→
0
x \to 0
x→0 时,
sin
(
1
x
)
\sin\left(\frac{1}{x}\right)
sin(x1) 在
[
−
1
,
1
]
[-1,1]
[−1,1] 振荡无限次,极限不存在。
结论:
x
=
0
x=0
x=0 为振荡间断点。
四、历年真题精选(2020年前)
真题1(2010年)
题目:求
lim
x
→
0
1
+
2
x
−
e
x
+
1
2
x
2
x
3
\lim_{x \to 0} \frac{\sqrt{1+2x} - e^x + \frac{1}{2}x^2}{x^3}
x→0limx31+2x−ex+21x2。
解析:
泰勒展开至
x
3
x^3
x3:
1
+
2
x
=
1
+
x
−
x
2
2
+
x
3
2
+
o
(
x
3
)
e
x
=
1
+
x
+
x
2
2
+
x
3
6
+
o
(
x
3
)
\begin{aligned} \sqrt{1+2x} &= 1 + x - \frac{x^2}{2} + \frac{x^3}{2} + o(x^3) \\ e^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) \end{aligned}
1+2xex=1+x−2x2+2x3+o(x3)=1+x+2x2+6x3+o(x3)
代入得极限
1
3
\frac{1}{3}
31。
真题2(2008年)
题目:设
f
(
x
)
=
x
2
−
x
∣
x
∣
(
x
−
1
)
f(x) = \frac{x^2 - x}{|x|(x-1)}
f(x)=∣x∣(x−1)x2−x,求其间断点及类型。
解析:
化简函数:
f
(
x
)
=
{
x
(
x
−
1
)
x
(
x
−
1
)
=
1
x
>
0
且
x
≠
1
x
(
x
−
1
)
−
x
(
x
−
1
)
=
−
1
x
<
0
f(x) = \begin{cases} \frac{x(x-1)}{x(x-1)} = 1 & x > 0 \text{且} x \neq 1 \\ \frac{x(x-1)}{-x(x-1)} = -1 & x < 0 \end{cases}
f(x)={x(x−1)x(x−1)=1−x(x−1)x(x−1)=−1x>0且x=1x<0
结论:
x
=
0
x=0
x=0 为跳跃间断点,
x
=
1
x=1
x=1 为可去间断点。
五、预测考题与解析
预测题1(复合函数与极限综合)
题目:设
f
(
x
)
=
{
e
1
/
x
x
≠
0
0
x
=
0
f(x) = \begin{cases} e^{1/x} & x \neq 0 \\ 0 & x = 0 \end{cases}
f(x)={e1/x0x=0x=0,求
lim
x
→
0
f
(
f
(
x
)
)
\lim_{x \to 0} f(f(x))
x→0limf(f(x))。
解析:
分左右极限:
lim
x
→
0
+
f
(
x
)
=
+
∞
⇒
lim
x
→
0
+
f
(
f
(
x
)
)
=
lim
y
→
+
∞
e
y
=
+
∞
lim
x
→
0
−
f
(
x
)
=
0
⇒
lim
x
→
0
−
f
(
f
(
x
)
)
=
f
(
0
)
=
0
\begin{aligned} \lim_{x \to 0^+} f(x) &= +\infty \Rightarrow \lim_{x \to 0^+} f(f(x)) = \lim_{y \to +\infty} e^y = +\infty \\ \lim_{x \to 0^-} f(x) &= 0 \Rightarrow \lim_{x \to 0^-} f(f(x)) = f(0) = 0 \end{aligned}
x→0+limf(x)x→0−limf(x)=+∞⇒x→0+limf(f(x))=y→+∞limey=+∞=0⇒x→0−limf(f(x))=f(0)=0
结论:极限不存在。
预测题2(一致连续性证明)
题目:证明
f
(
x
)
=
x
sin
1
x
f(x) = x \sin \frac{1}{x}
f(x)=xsinx1 在
(
0
,
1
)
(0,1)
(0,1) 上不一致连续。
解析:
取数列
x
n
=
1
2
n
π
x_n = \frac{1}{2n\pi}
xn=2nπ1,
y
n
=
1
2
n
π
+
π
/
2
y_n = \frac{1}{2n\pi + \pi/2}
yn=2nπ+π/21,则:
∣
f
(
x
n
)
−
f
(
y
n
)
∣
=
∣
1
2
n
π
⋅
0
−
1
2
n
π
+
π
/
2
⋅
1
∣
→
1
π
/
2
≠
0
|f(x_n) - f(y_n)| = \left| \frac{1}{2n\pi} \cdot 0 - \frac{1}{2n\pi + \pi/2} \cdot 1 \right| \to \frac{1}{\pi/2} \neq 0
∣f(xn)−f(yn)∣=
2nπ1⋅0−2nπ+π/21⋅1
→π/21=0
结论:不满足一致连续定义。