修改resnet50网络的结构层

class Backbone(nn.Module):
    def __init__(self, pretrain_path=None):
        super(Backbone, self).__init__()
        net = resnet50()
        self.out_channels = [1024, 512, 512, 256, 256, 256]

        if pretrain_path is not None:
            net.load_state_dict(torch.load(pretrain_path))

        self.feature_extractor = nn.Sequential(*list(net.children())[:7])

        conv4_block1 = self.feature_extractor[-1][0]

        # 修改conv4_block1的步距,从2->1
        conv4_block1.conv1.stride = (1, 1)
        conv4_block1.conv2.stride = (1, 1)
        conv4_block1.downsample[0].stride = (1, 1)

    def forward(self, x):
        x = self.feature_extractor(x)
        return x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值