题目描述
输入一个偶数 N,验证 4∼N 所有偶数是否符合哥德巴赫猜想:任一大于 2 的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如 10,10=3+7=5+5,10=3+7=5+5,则 10=5+5,10=5+5 是错误答案。
输入格式
第一行输入一个正偶数 N
输出格式
输出 (N-2)/2 行。对于第 i 行:
首先先输出正偶数 2i+2,然后输出等号,再输出加和为2i+2 且第一个加数最小的两个质数,以加
号隔开。
输入输出样例
输入 #1
10
输出 #1
4=2+2 6=3+3 8=3+5 10=3+7
这题要用if+函数(sushu),可以用2层循环遍历,i是最前面的数,j在小于i的情况下判断j和i-j是否都为素数,j从2开始,不用去判断谁小(因为从最小开始,最先求出来的就是最小值)。
素数函数想必学过函数的人都很熟悉了吧:
bool sushu(int n){
if(n==1){//特判1,保守一点
r