CF449D Jzzhu and Numbers 题解

CF449D Jzzhu and Numbers

题意

给定 A 1 . . . . A n A_1....A_n A1....An,选任意个数使得它们与和为 0 0 0,求方案数。

思路

很朴素的想法是枚举每个数,然后进行 0-1 背包方案数统计,时间复杂度 O ( n × n ) O(n \times n) O(n×n)

而根据前面几题的经验,这种与运算等于 0 0 0 且统计数量的题,应该和 SoS dp 有关。

f ( x ) f(x) f(x) 的设计

如果采用一般 SoS dp 的定义, f ( x ) f(x) f(x) 表示的是多少个数是 x x x 的子集, g ( x ) g(x) g(x) 表示选择的数的与和是 x x x 的子集的方案数。

两者并无直接联系,需要做些调整,考虑重新设计状态。

容斥原理统计方案数

f ( x ) f(x) f(x) x x x 是多少个数的子集。

那么若 x x x 二进制下的第 i i i 位为 1 1 1 f ( x ) f(x) f(x) 对应集合中的任意一个数,应满足数第 i i i 位为 1 1 1

g ( x ) g(x) g(x) x x x 是选择的数的与和的子集的方案数。

那么若 x x x 二进制下的第 i i i 位为 1 1 1 g ( x ) g(x) g(x) 对应集合中的任意一组选择方案,应满足选择的数的第 i i i 全部均为 1 1 1

所以 g ( x ) g(x) g(x) 对应集合中的元素均属于 f ( x ) f(x) f(x) 对应集合,得 g ( x ) = 2 f ( x ) − 1 g(x)=2^{f(x)}-1 g(x)=2f(x)1(减掉空集的情况)。

A = { 0 , 1 , 2 , 3 } A=\lbrace {0,1,2,3} \rbrace A={0,1,2,3} 为例,下图中代表的是 g ( x ) g(x) g(x) 所对应的集合:
在这里插入图片描述
答案即为灰色部分。

考虑采用容斥原理求解并集:若二进制中 1 1 1 的个数为奇数,则符号为正,反之为负。

对于 f ( x ) f(x) f(x) 的求解

1. 改转移方程

一般的 SoS dp 中,统计 m a s k mask mask 的子集,有:

S ( m a s k , i ) = { S ( m a s k , i − 1 ) i t h    b i t    o f f S ( m a s k , i − 1 ) ∪ S ( m a s k ⊕ 2 i , i − 1 ) i t h    b i t    o n S(mask, i)=\begin{cases} S(mask, i-1) & i^{th} \,\, bit \,\, off\\ S(mask, i-1) \cup S(mask \oplus 2^i,i-1)& i^{th} \,\, bit \,\, on\\ \end{cases} S(mask,i)={S(mask,i1)S(mask,i1)S(mask2i,i1)ithbitoffithbiton

现统计 m a s k mask mask 是哪些数的子集,有:

S ( m a s k , i ) = { S ( m a s k , i − 1 ) i t h    b i t    o n S ( m a s k , i − 1 ) ∪ S ( m a s k ⊕ 2 i , i − 1 ) i t h    b i t    o f f S(mask, i)=\begin{cases} S(mask, i-1) & i^{th} \,\, bit \,\, on\\ S(mask, i-1) \cup S(mask \oplus 2^i,i-1)& i^{th} \,\, bit \,\, off\\ \end{cases} S(mask,i)={S(mask,i1)S(mask,i1)S(mask2i,i1)ithbitonithbitoff

code version 1

2. 取反后统计

a a a 取反为 a ′ a' a b b b 取反为 b ′ b' b

a ⊆ b a\sube b ab,那么 b ′ ⊆ a ′ b' \sube a' ba

若有 k k k 个数是 m a s k ′ mask' mask 的子集,那么 f ( m a s k ) = k f(mask)=k f(mask)=k

code version 2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您提供 Mathor Cup 2022 D 题的解题思路。 题目描述: 给定一个 $n\times n$ 的矩阵 $A$,其中 $A_{i,j}\in\{0,1\}$。你可以进行任意次以下操作: 1. 将第 $i$ 行取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$); 2. 将第 $j$ 列取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$)。 请你计算通过若干次操作后,能够使得矩阵 $A$ 的每一行和每一列的 $1$ 的个数相等的最小操作次数。 解题思路: 本题可以使用贪心和二分图匹配的思想来解决。具体步骤如下: 1. 统计每一行和每一列的 $1$ 的个数,设 $row_i$ 表示第 $i$ 行的 $1$ 的个数,$col_j$ 表示第 $j$ 列的 $1$ 的个数。 2. 如果每一行和每一列的 $1$ 的个数都相等,那么无需进行任何操作,直接输出 $0$。 3. 如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将该行取反,将 $row_i$ 减一,将 $col_j$ 加一。 4. 如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将该列取反,将 $col_j$ 减一,将 $row_i$ 加一。 5. 重复步骤 3 和步骤 4,直到每一行和每一列的 $1$ 的个数都相等。 6. 计算进行的操作次数,输出结果。 需要注意的是,为了避免重复计算,我们可以使用二分图匹配的思想来进行操作。将每一行和每一列看做二分图的两个部分,如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将第 $i$ 行和所有 $1$ 的个数比该行少的列建立一条边;如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将第 $j$ 列和所有 $1$ 的个数比该列少的行建立一条边。最后,将二分图的最小路径覆盖数乘以 $2$ 就是最小操作次数。 时间复杂度:$O(n^3)$。 完整代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值