上海高考解析几何

解析几何的核心思想。

1. 核心分析方法:

自由度引入

方程组中, n n n 个未知数需要 n n n 个等式来解出具体的值。

自由度

性质

  1. 一个未知数带来一个自由度,一个等式条件减少一个自由度(减少自由度的方式为消元)。
  2. 通过换元,我们可以改变自由度的对象,却无法减少自由度

应用

起初先假设所有东西都是自由的,将条件看成限制关系。

或者由某些自由度出发,通过限制条件不断去扩展信息。

值得注意的是,一些不等式的条件无法直接减少自由度,就好比解方程组里给你一个范围的限制。

在解题中,我们一定要根据最后所求量判断解题思路是否合理

  • 求取值范围:一个自由度的函数分析
  • 证直线过定点:一个自由度的直线过定点

笔者认为,解析几就是解方程。解方程的思想:代入消元,如果是对称式考虑加减消元,也可能加减与代入相结合。

2. 什么时候设点设直线?

设直线联立本质

假设联立 l P Q l_{PQ} lPQ 与椭圆,起初 x P , y P , x Q , y Q x_P, y_P, x_Q, y_Q xP,yP,xQ,yQ 四个自由度,通过 P , Q ∈ C 椭圆 P,Q \in C_{椭圆} P,QC椭圆,获得 x P , y P x_P, y_P xP,yP 以及 x Q , y Q x_Q, y_Q xQ,yQ 关系,减少两个自由度。

然而,在表示 P , Q P,Q P,Q x , y x,y x,y 关系时,还需要讨论其正负。

那有没有一种不用讨论正负的方法呢?例如通过设直线 y = k x + b y = kx + b y=kx+b,我们发现,通过联立直线和椭圆, P , Q P,Q P,Q 是确定的,因此我们通过设直线,用两个自由度得以不用讨论描述相同的信息。

设直线用处

直线 l A B l_{AB} lAB 有两个自由度,而我们可以通过转换对象的方式改变自由度,例如以 A A A 和斜率作为自由度,那么 B B B 和截距就是确定量;以斜率截距作为自由度,那么 A , B A,B A,B 就是确定量,并且关于 A , B A,B A,B 对称的式子可疑很方便的用 k , b k,b k,b 表示出来,而相反,用前面那种 A A A 和斜率的方式就会破坏这种对称性。

因此不难发现,直线的用处有二:1. 表示关于两点的对称式 2. 找两点关系

在解析几何中,在保证自由度数量的前提下,我们尽量保证对称性。

3. 例题:25春考

在这里插入图片描述

初始自由度: x P , y P , x Q , y Q , T x_P, y_P, x_Q, y_Q, T xP,yP,xQ,yQ,T 五个自由度,这题的四个条件分别是: P ∈ Γ P \in \Gamma PΓ Q ∈ Γ Q \in \Gamma QΓ,等腰,直角。

而设的东西一定不能凭空增加自由度,一定是利用条件来维持自由度个数的平衡。

方法一:设直线联立的方法:

l P Q : y = k x + b l_{PQ}: y = kx + b lPQ:y=kx+b 带来两个自由度, l P Q l_{PQ} lPQ 确定,与椭圆联立后 P , Q P, Q P,Q 均确定,因此并没有增加自由度。现在加上 T T T 共三个自由度,我们还有等腰 + 直角两个条件没用,两个条件减少两个自由度,最后剩一个自由度,即最后求取值范围所剩的自由度。

在这里插入图片描述
总结:
通过设直线,我们引入两个自由度,并利用了椭圆的两个条件保持自由度个数的平衡。

还有一种全新的做法,核心在于:在保证自由度数量的同时,尽可能方便的表示

方法一我们在设的时候利用了椭圆的条件,方法二三我们考虑设的时候考虑利用等腰直角的两个条件设

方法二:直线的参数方程

通过换一种直线设法,能够方便表示弦长,从而减少计算量。

方法三

设两条直角边,神奇的是,这样做是对称的。

在这里插入图片描述

总结

方法一思考量小计算量大,方法二思考量计算量均适中,方法三思考量较大计算量适中。

设直线、直线参数方程、设点、点的参数方程,这四种在高考足矣。需要注重解方程的思想。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值