数据结构-堆的创建(详解)

目录

堆的概念及结构

 堆的实现

堆的向上调整算法

代码实现:

思路详解:

 堆的向下调整算法

代码实现:

思路详解:

堆的创建:

堆结构的定义及相关函数的声明:

堆的初始化:

堆的销毁:

堆的插入:

堆的删除:

取得堆顶元素:

堆的判空:

堆中元素的个数:

向上调整算法:

向下调整算法:

交换: 


堆的概念及结构

堆:1 完全二叉树

任何一个数组都可以看成一个完全二叉树,所以堆的物理结构就是数组,逻辑结构是一颗完全二叉树

       2 大堆:树中任何一个父亲都大于或者等于孩子

          小堆:树中任何一个父亲都小于或者等于孩子

3 父子下标关系 leftchild = parent*2+1   rightchild = parent*2+2

                         parent = (child-1)/2

 堆的实现

堆的向上调整算法

代码实现:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//向上调整算法--建小堆
void AdjustUp(int* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)//孩子已经调整至堆顶,调无可调
	{
		if (a[child] < a[parent])//建小堆,若建大堆,则满足孩子大于父亲就交换
		{
			Swap(&a[child], &a[parent]);
			child = parent;//孩子节点现在的位置就是原来的父亲的位置
			parent = (child - 1) / 2;//孩子节点现在位置上的父亲下标(新父亲)
		}
		else//位置合适,无需调堆
		{
			break;
		}
		
	}
}

思路详解:

向上调整建堆其实就是一个插入的过程,向上调整算法的前提是插入之前,已经是堆

下面我以建小堆的思路来介绍:

 每插入一个元素,可能需要多次向上调整,即可能会与自己所有的祖先节点比较,首先和其父亲 (下标是:(child-1)/2 )比较,若是小于父亲则二者交换,此元素作为孩子向上调到父亲的位置,然后再和这个位置上的父亲比较,过程一样……,若是大于父亲则无需向上调堆,位置合适

孩子节点何时停止向上调整 ?

 1 孩子节点处在合适的位置 即孩子节点大于父亲节点

or:孩子节点调整至堆顶,调无可调

 插入的孩子60比父亲56大,位置合适,插入后还是小堆,无需向上调整

插入的孩子50小于其父亲56,需要向上调整:

孩子50和父亲56交换位置,现在孩子50处在父亲56的位置,然后求出孩子50现在的下标,即child=parent,继而求出孩子50现在的父亲下标 parent = (child-1)/2 

孩子50小于现在的父亲10,位置合适,结构保持为堆,无需继续向上调整

 

孩子8比父亲56小,向上调整,调到父亲56的位置,继续与现在位置上的父亲10比较,小于,向上调整, 调到父亲10的位置,此时已经处在堆顶,下标为0,无需继续调堆

 堆的向下调整算法

代码实现:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//向下调整算法--建小堆
void AdjustDown(int* a, int n,int parent)
{
	int child = parent * 2 + 1;//假设左右孩子中最小的孩子是左孩子
	while (child < n)//只要一个父亲节点还有左孩子,则有继续向下调整的可能
	{
		if (child + 1 < n && a[child + 1] < a[child])//右孩子存在且右孩子<左孩子,假设不成立,更换有孩子为最小的孩子,child更新为右孩子的下标,右孩子的下标为左孩子的下标+1
		{
			child++;
		}

		if (a[child] < a[parent])//左右孩子中最小的孩子比父亲小,交换二者位置
		{
			Swap(&a[child], &a[parent]);
			parent = child;//父亲节点现在处在最小孩子的位置
			child = parent * 2 + 1;//父亲节点现在最小孩子(依然先做假设)
		}
		else//左右孩子中最小的孩子都比父亲节点大,父亲节点无需向下调整,位置合适,保持小堆
		{
			break;
		}
	}
}

思路详解:

向下调整算法有一个前提:左右子树必须是一个堆,才能调整

1 从父节点开始向下调整

  先选出左右孩子中最小/最大的一个,然后与其比较:下面我按小堆的形式介绍

  若是父亲小于孩子中最小的一个,则无需向下调整

  若是父亲大于孩子中最小的一个,则二者交换,父亲调至最小孩子的位置

  再求出它现在最小孩子的下标,二者比较,重复上述过程

2 父节点何时停止向下调整:

  父节点处在合适的位置,父节点小于最小的孩子

or:父节点调至叶子节点,调无可调,此时的父节点是没有左孩子的,故而当父亲的要与之交换的孩子下标越界后,就无需再向下调整了

                                          

 

 

 

 

 

堆的创建:

堆结构的定义及相关函数的声明:

堆是一颗完全二叉树,任何一个数组都可以看成一颗完全二叉树,所以堆结构就可以用数组来实现

#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int HPDataType;

typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

void HeapInit(HP* php);
void HeapDestroy(HP* php);
void HeapPush(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);

void AdjustUp(HPDataType* a, int child);
void AdjustDown(int* a, int n, int parent);

堆的初始化:

void HeapInit(HP* php)
{
	assert(php);//断言,确保堆指针不为空
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

堆的销毁:

void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

堆的插入:

void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	if (php->size == php->capacity)//空间满了需要扩容
	{
		int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;
		HPDataType* tmp = (HPDataType*)realloc(php->a,sizeof(int) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}

	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);//每插入一个元素需要向上调整,以保持堆结构
}

堆的删除:

删除的是堆顶的元素,方法是:

1 将堆顶元素与最后一个元素交换

2 删除最后一个元素,即实现删除堆顶元素的效果

3 从现在的堆顶位置开始向下调整,以维持堆结构不变

void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));//为空不能删除
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

取得堆顶元素:

HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));//为空不能取数据
	return php->a[0];
}

堆的判空:

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

堆中元素的个数:

int HeapSize(HP* php)
{
	assert(php);
	return php->size;
}

向上调整算法:

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

向下调整算法:

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] < a[child])
		{
			child++;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

交换: 

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

现在我们来使用这个堆结构吧,将数组建成一个小堆,不断打印堆顶元素我们会得到一个递增序列,但注意!!建成小堆后数组任然无序,因为堆只规定了父子间的关系,没有规定兄弟间的关系

得到最小的堆顶元素后,删除堆顶元素,新交换到堆顶的元素向下调整,会得到第二小的元素,然后是第三小,第四小……所以不断打印堆顶元素会是有序序列

int main()
{
	HP heap;
	HeapInit(&heap);
	int arr[] = { 9,8,7,6,5 };
	int sz = sizeof(arr) / sizeof(arr[0]);

	
	int i = 0;
	for (i = 0; i < sz; i++)
	{
		HeapPush(&heap, arr[i]);
	}

	while (!HeapEmpty(&heap))
	{
		int Top = HeapTop(&heap);
		HeapPop(&heap);
		printf("%d ", Top);
	}

	HeapDestroy(&heap);
	return 0;
}

堆中的元素:物理结构如上

可以看到数组成为小堆后仍然不是有序的

逻辑结构图:

不断打印堆顶元素,得到一个递增序列:

 

 完结撒花~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值