自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 PyTorch 卷积神经网络与交叉熵损失计算实战

本文介绍了使用PyTorch构建CNN模型完成CIFAR-10图像分类任务的基本流程。主要内容包括:1.实验环境搭建与目标说明;2.使用torchvision加载CIFAR-10测试集;3.构建包含卷积层、池化层和全连接层的Sequential模型;4.演示单样本前向传播及交叉熵损失计算过程。通过该实验,读者可以掌握深度学习模型的基础搭建方法和损失计算原理,为后续完整的训练流程奠定基础。

2025-06-22 17:45:33 197

原创 使用 PyTorch Sequential 构建卷积神经网络并可视化模型结构

本文介绍了使用PyTorch构建CNN模型并进行可视化的方法。通过torch.nn.Sequential构建了一个包含3层卷积池化、展平操作和2层全连接的网络结构,输入32×32图像输出10分类结果。实验展示了模型定义、实例化测试和使用TensorBoard可视化计算图的完整流程,重点讲解了卷积核设置、尺寸变化和数据流向。代码示例包括模型类定义、输入输出验证和可视化实现,帮助理解CNN的基本架构和工作原理。最后提供了TensorBoard启动命令来查看网络结构。

2025-06-22 17:39:29 328

原创 PyTorch 全连接层(Linear)实验总结:CIFAR-10 图像分类基础处理

《PyTorch实现CIFAR-10图像分类基础实验》摘要:本文通过PyTorch演示了CIFAR-10图像分类的基础流程。首先使用torchvision加载数据集并构建DataLoader,重点说明drop_last参数的作用。接着构建包含单个Linear层的神经网络,将3×32×32的图像展平为3072维向量后送入模型。实验详细展示了输入图像(64,3,32,32)、展平后(64,3072)和输出(64,10)的张量维度变化,强调flatten操作需保留batch维度。该实验为理解神经网络分类层和后续C

2025-06-22 17:32:21 359

原创 PyTorch 激活函数与 TensorBoard 图像可视化实验总结

摘要:本实验演示了使用PyTorch中的Sigmoid激活函数处理CIFAR-10图像数据,并通过TensorBoard可视化处理前后的图像对比。实验构建了包含Sigmoid激活的神经网络模块,将像素值压缩到(0,1)区间,直观展示了非线性变换效果。具体步骤包括:数据加载、模型定义、图像处理及可视化呈现。实验结果表明,Sigmoid函数能有效改变图像像素分布,为理解神经网络激活机制提供了直观案例。该方法可推广到更复杂的CNN网络分析中。

2025-06-22 17:22:18 476

原创 PyTorch 最大池化实验总结 + TensorBoard 可视化指南

本文演示了使用MaxPool2d处理CIFAR-10图像数据并通过TensorBoard可视化的方法。实验首先加载CIFAR-10测试集,定义3×3最大池化模型,然后批量处理图像并记录输入/输出结果。通过TensorBoard可直观对比原图与池化后的效果,帮助理解卷积神经网络中池化层的作用。整个流程清晰完整,适合深度学习初学者掌握基本的图像特征提取过程。

2025-06-22 17:13:30 240

原创 土堆说-卷积操作

本章涵盖了基础的二维卷积操作和使用 nn.Conv2d模块 + TensorBoard 可视化卷积效果的完整流程。#3是通道数(RGB代表彩色);这个卷积层会学出 6 个不同的卷积核;每个卷积核大小是 3×3;步长为 1,意味着卷积核在图像上每次移动1个单位;给原图四周加上 8 层像素宽的 0。#self.conv1 是在 __init__() 中创建的 一个网络层(卷积层)。# self.conv1 其实就是一个 属性,它会被自动注册到这个模型类里,变成网络的一部分。

2025-06-14 16:14:06 964

原创 神经网络机基本框架-nn.Module的使用

本文介绍了如何通过继承PyTorch的torch.nn.Module类创建自定义神经网络模块。主要内容包括:1)展示了一个名为"yaowen"的简单网络模块示例代码,该模块实现了输入值加1的前向传播逻辑;2)解释了nn.Module是所有PyTorch神经网络模块的基类,创建自定义模型时需要继承它并重写__init__()和forward()方法;3)forward()方法用于定义具体的前向传播计算过程。该示例展示了构建PyTorch神经网络模型的基本方法,是深度学习网络开发的基础。

2025-06-14 14:28:09 311

原创 PyTorch 中使用 DataLoader + TensorBoard 可视化 CIFAR-10 图像数据

本文介绍了使用PyTorch工具加载和可视化CIFAR-10数据集的方法。主要内容包括:1)使用torchvision.datasets.CIFAR10加载测试集数据并进行Tensor转换;2)通过DataLoader批量加载数据并设置参数;3)使用TensorBoard的SummaryWriter记录图像数据,重点说明add_image()和add_images()方法的区别及正确用法;4)启动TensorBoard查看批量图像的可视化结果。文章面向深度学习初学者,提供了完整的代码示例和关键参数说明,并指

2025-06-13 21:34:01 589

原创 使用 PyTorch 和 TensorBoard 可视化 CIFAR-10 数据集

本文介绍了使用PyTorch和TensorBoard可视化CIFAR-10数据集的方法。首先通过torchvision.datasets加载数据集,并使用ToTensor()进行预处理。然后利用SummaryWriter将训练集前10张图片写入TensorBoard日志。最后在终端启动TensorBoard服务即可查看32×32像素的图片可视化效果。该方法简单易行,能帮助初学者直观理解模型输入数据,是深度学习入门的重要实践。文中还提供了参数说明和数据集获取链接,为后续模型训练打下基础。

2025-06-13 20:37:56 1021

原创 Transforms的使用以及常见的Transforms(to tensor,normalize,resize,compose,Random_crop)

本文介绍了使用PyTorch的transforms模块和TensorBoard进行图像处理与可视化的方法。主要内容包括:ToTensor转换、Normalize归一化、Resize调整尺寸、Compose组合变换以及RandomCrop随机裁剪等操作。通过代码示例展示了各方法的实际应用,并强调使用TensorBoard可视化效果的重要性。文章总结了对图像预处理核心流程的理解,包括执行顺序原则和数据增强技巧,为深度学习中图像处理提供了实用指导。

2025-06-11 23:13:02 1139 1

原创 学习TensorBoard的使用方法与帮助文档

本文记录了TensorBoard的学习过程,主要包括安装和使用方法。首先通过conda激活环境并使用pip安装TensorBoard。核心功能是通过SummaryWriter类创建日志文件,将训练数据可视化。文章演示了两个示例:1)将本地图像转为NumPy数组后写入TensorBoard,需注意HWC格式设置;2)绘制y=3x线性函数曲线。最后介绍了如何启动TensorBoard服务查看可视化结果。学习过程中还提到利用PyCharm帮助文档查看函数信息的方法。

2025-06-11 20:40:33 346

原创 jupyter notebook创建文件时找不到指定虚拟环境

在Jupyter Notebook中无法使用创建的虚拟环境(如PyTorch)时,原因是该环境未被导入。解决方法如下:首先在虚拟环境中安装ipykernel包(conda install ipykernel),然后执行命令将虚拟环境添加到Jupyter中(python -m ipykernel install --user --name 环境名 --display-name "显示名称")。例如,名为pytorch的环境可设置为显示为"Python(pytorch)"

2025-06-09 11:01:57 471 1

原创 使用conda配置pytorch的详细教程

本文详细介绍了使用conda配置PyTorch环境的完整步骤:首先下载安装Anaconda,注意保存安装路径并跳过附加配置;接着在Anaconda Prompt中创建Python 3.9的PyTorch虚拟环境;然后验证显卡驱动,通过PyTorch官网获取适合的安装命令进行安装;最后验证PyTorch是否成功安装。整个过程涵盖了从环境搭建到最终验证的全流程,特别提示了GPU和CPU版本的选择注意事项,为深度学习初学者提供了清晰的配置指南。

2025-06-09 09:45:15 545

原创 仓库管理系统

printf("货物标号:%d,货物价格:%d,货物的数量:%d,货物的名称:%s\n",move->goods.number,move->goods.price,move->goods.much,move->goods.name);printf("货物标号:%d,货物价格:%d,货物的数量:%d,货物的名称:%s\n",move->goods.number,move->goods.price,move->goods.much,move->goods.name);=1)//存入数据,并判断是否成功。

2024-11-13 13:15:11 921 3

原创 C仓库管理系统

printf("货物标号:%d,货物价格:%d,货物的数量:%d,货物的名称:%s\n",move->goods.number,move->goods.price,move->goods.much,move->goods.name);printf("货物标号:%d,货物价格:%d,货物的数量:%d,货物的名称:%s\n",move->goods.number,move->goods.price,move->goods.much,move->goods.name);=1)//存入数据,并判断是否成功。

2024-11-09 22:18:44 1072 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除