AcWing 1107. 魔板 (BFS最小步数模型 + 模拟 + 实现起来真麻烦啊

补充 : 题目中说要输出字典序最小的操作步骤, 其实只需要保证我们的搜索顺序是按 A B C来就好了
因为这样子可以保证我们队列中的状态都是走到该状态操作次数最小, 并且操作序列字典序最小

package 算法提高课;

import java.util.*;

public class acw1107 {

    /**
     * 思路比较简单 : 只需要将每一个图都看成一个点(状态), 然后用bfs跑遍所有状态就能找到符合题目要求的最小步骤了
     * 实现比较难 : 和八数码一样, 都属于最小步数模型中的题目, 思路简单的前提就是实现起来是有一定难度的
     *            本题具体如何实现的, 看代码注释
     *            还有就是好好题, 题目直接就说了把一个状态顺时针转化为字符串
     * */
    static class PCS { // 给pre用的, 把上一步的到下一步的操作和上一步的状态打包一起
        char op;
        String s;
        public PCS(char op, String s) {
            this.op = op;
            this.s = s;
        }
    }
    static char[][] g = new char[2][4]; // 给ABC三种操作用的
    static Map<String, Integer> dist = new HashMap<>(); // bfs用的dist数组 -> 走到当前状态String需要花费的操作数Integer
    static Map<String, PCS> pre = new HashMap<>(); // 当前状态String的上一步是什么状态PCS.s, 以及上一步怎么走到当前状态的PCS.op

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        StringBuilder start = new StringBuilder(), end = new StringBuilder();
        for (int i = 0; i < 8; i ++ ) {
            int x = sc.nextInt();
            end.append((char)(x + '0')); // 将输入转化为字符串
        }

        for (int i = 0; i < 8; i ++ ) start.append((char)(i + '1')); // 起始状态
        int step = bfs(start, end); // 算出答案
        System.out.println(step); // 输出答案

        StringBuilder res = new StringBuilder();
        while (!end.toString().contentEquals(start)) { // 通过回溯得到步骤
//            System.out.println("debug -> " + end);
            res.append(pre.get(end.toString()).op);
            end = new StringBuilder(pre.get(end.toString()).s);
        }
        res.reverse(); // 因为回溯得到的是逆序, 所以转回来
        if (step > 0) System.out.println(res);
    }

    public static int bfs(StringBuilder start, StringBuilder end) {
        if (start.toString().contentEquals(end)) return 0; // 刚开始就一样的话直接退出来就好了

        Queue<String> q = new LinkedList<>(); // q存的是每一个状态
        q.add(start.toString());
        dist.put(start.toString(), 0);

        while (!q.isEmpty()) {
            String t = q.poll();
            String[] m = new String[3]; // m[i]记录从当前状态t经过三种操作后的状态
            m[0] = moveA(t);
            m[1] = moveB(t);
            m[2] = moveC(t);

            for (int i = 0; i < 3; i ++ ) {
                if (!dist.containsKey(m[i])) { // 根据bfs特性 : 如果一个状态之前走过了, 那他的最小步数就确定了, 当前答案一定不是最优, 跳过就好了
                    dist.put(m[i], dist.get(t) + 1); // 得到m[i]的答案 -> dist.get(t) + 1
                    pre.put(m[i], new PCS((char)('A' + i), t)); // 将m[i]的上一步状态和操作记录下来
                    q.add(m[i]); // 当前状态入队
                    if (m[i].contentEquals(end)) return dist.get(end.toString()); // 搜索到了答案
                }
            }
        }

        return -1; // 垃圾值 : 因为说了必定有解
    }

    public static void set(String state) { // 将该状态state放到字符数组g[2][4]以便三种操作
        for (int i = 0; i < 4; i ++ ) g[0][i] = state.charAt(i);
        for (int i = 7, j = 0; j < 4; j ++, i -- ) g[1][j] = state.charAt(i);
    }

    public static String get() { // 经过三种操作变形后, 再把字符数组g[2][4]转化为我们存的状态String state
        StringBuilder ret = new StringBuilder();
        for (int i = 0; i < 4; i ++ ) ret.append(g[0][i]);
        for (int i = 3; i >= 0; i -- ) ret.append(g[1][i]);
        return ret.toString();
    }

    public static String moveA(String state) { // 操作A : 上下翻转
        set(state);
        for (int i = 0; i < 4; i ++ ) swap(0, i, 1, i); // 手写swap方法 : 不想多写一个函数就写里面, 看个人爱好
        return get();
    }

    public static String moveB(String state) { // 操作B : 将最右侧一列放到第一列
        set(state);
        char v0 = g[0][3], v1 = g[1][3];
        for (int i = 3; i > 0; i -- ) {
            g[0][i] = g[0][i - 1];
            g[1][i] = g[1][i - 1];
        }
        g[0][0] = v0; g[1][0] = v1;
        return get();
    }

    public static String moveC(String state) { // 操作C : 中间四个顺时针旋转一下
        set(state);
        char v = g[0][1];
        g[0][1] = g[1][1];
        g[1][1] = g[1][2];
        g[1][2] = g[0][2];
        g[0][2] = v;
        return get();
    }

    public static void swap(int a, int b, int x, int y) { // 将g[a][b]和g[x][y]交换
        char t = g[a][b];
        g[a][b] = g[x][y];
        g[x][y] = t;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值