树与图的宽度优先遍历

大致思想请参照添加链接描述该篇博客

主要地方的差异就是:

宽度优先遍历就是一层一层的搜索

在这里插入图片描述

图中数的层次题目

给定一个 n个点 m条边的有向图,图中可能存在重边和自环。

所有边的长度都是 1,点的编号为 1∼n。

请你求出 1号点到 n号点的最短距离,如果从 1号点无法走到 n号点,输出 −1。

输入格式

第一行包含两个整数 n和 m。

接下来 m行,每行包含两个整数 a和 b,表示存在一条从 a走到 b的长度为 1的边。

输出格式

输出一个整数,表示 1号点到 n号点的最短距离。

数据范围

1≤n,m≤10^5

输入样例:

3 3
1 2
2 3
1 3

输出样例:

1 2 3

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 100010;


int n, m;
int h[N], e[N], ne[N], idx;
int d[N];//记录距离
int q[N];//队列

void add(int a, int b)
{
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx;
	idx++;
}

int bfs()
{
	int hh = 0, tt = 0;//定义队头和队尾
	q[0] = 1; //第一个元素就是起点1

	memset(d, -1, sizeof d);//初始化距离为-1  表示没有被遍历过

	d[1] = 0; //第一个点被遍历过了  为0

	while (hh <= tt)
	{
		int t = q[hh++];//取出队头元素
		for (int i = h[t] ; i != -1; i = ne[i])
		{
			int j = e[i];
			if (d[j] == -1) // j没有被扩展过
			{
				d[j] = d[t] + 1;//扩展j
				q[++j] = j;
			}
		}
	}
	return d[n];
}

int main()
{
	cin >> n >> m;

	memset(h,-1,sizeof h);

	for (int i = 0; i < m; i++)
	{
		int a, b;
		cin >> a >> b;
		add(a, b);
	}

	cout << bfs() << endl;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少年负剑去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值