1、DFS深度优先搜索
1、介绍
DFS即Depth First Search,深度优先搜索。简单地理解为一条路走到黑。
以该图为例:先走A,然后到B,到了B有三种情况,意味着这条路还没走完,那我就接着走,从B走到E,走到E之后没路了。那我就回溯到B,为什么呢?
因为我原本走到B的时候就有三种情况,但是刚刚只走了一种情况,因此我要回到B再去尝试第二条路,于是我们就从E回到B,然后从B去F。到了F,又没路了,那我们就回到B走第三种情况,从B到G。这样我们就走完了从A->B的三种情况。又因为在A处其实还有三种情况,因此我们走完B的三种情况后,回到A,去走除了从A->B的第二种情况,即A->C。由此以往。
2、题目1排列数字
解题思路
首先是一条路走到黑
然后开始回溯 因为 1 2 __ 后面只能写3 所以继续回溯发现第二位可以填3 然后第三位填2,如下图所示
最终可以得到这样的
代码
#include <iostream>
using namespace std;
const int N = 10;
int path[N];//记录的是路径
bool a[N]; // 记录的是数组中的值是否被使用过
int n;
void def(int u)
{
if (u == n)
{
for (int i = 0; i < n; i++) cout << path[i];
puts("");
return;
}
for (int i = 1; i <= n; i++)
if ( !a[i] ) //如果没有被使用过
{
path[u] = i;
a[i] = true; //标记为使用过了
def(u + 1);//遍历下一位
a[i] = false;
}
}
int main()
{
cin >> n;
def(0);
return 0;
}
3、题目2 n皇后问题
n−皇后问题是指将 n个皇后放在 n×n的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数 n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数 n。
输出格式
每个解决方案占 n行,每行输出一个长度为 n的字符串,用来表示完整的棋盘状态。其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
数据范围:
1≤n≤9
输入样例:
4
输出样例:
.Q…
…Q
Q…
…Q.
…Q.
Q…
…Q
.Q…
代码分析1:
每一行只能放一个皇后,每一行都要放一个皇后:
所以可以枚举每一行,枚举每一行 这个皇后就放到每一行上去
1 3 __ __
1是指 第一行第一个位置放一个皇后
3是指 第二行 第三个位置放一个皇后
bool dg[N], udg[N];//正对角线(蓝色),斜对角线(绿色)
//个数为2n-1
对于判断是否在同一主斜线(棋盘内与主对角线平行的斜线),我们使用 udg[] 数组,可以任取一个棋盘位(x,y),并观察主斜线上该点与其他点位之前的规律:
可以发现:主斜线上采样的多个点的x、y值的差,即说明多个点可通过减法映射到数组中的同一位置,判断斜线上是否出现过一次皇后,即查看 dia[x - y] 是否为空即可。但这样做减法时可能会得到一个负数,是没法直接映射到数组中的,因此主斜线上做判断时统一加上一个常量保证非负,即dia[x - y + n]。
同理,对于判断是否在同一副斜线(棋盘内与副对角线平行的斜线),我们使用 udia[] 数组,可以任取一个棋盘位(x,y),并观察副斜线上该点与其他点位之前的规律:
可以发现:主斜线上采样的多个点的x、y值的和,即说明多个点可通过加法映射到数组中的同一位置,判断斜线上是否出现过一次皇后,即判断 udia[x + y] 是否为空即可。
代码1:
#include <iostream>
using namespace std;
const int N = 10000;
int n;
char a[N][N];
bool st[N], dg[N], udg[N];
void dfs(int u)
{
if (u == n)
{
for (int i = 0; i < n; i++) puts(a[i]);
puts("");
return;
}
for (int i = 0; i < n; i++)
{
if (!st[i] && !dg[u + i] && !udg[n - u + i])// 这一行
{
a[u][i] = 'Q';
st[i] = dg[u + i] = udg[n - u + i] = true;
dfs(u + 1);
st[i] = dg[ u + i] = udg[n - u + i] = false;
a[u][i] = '.';
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
a[i][j] = '.';
dfs(0);
return 0;
}
代码2:
#include <iostream>
using namespace std;
const int N = 20;
char q[N][N];
int n;
bool row[N], col[N], dg[N], udg[N];
void dfs(int x, int y ,int num)//x表示第几行 y表示第几列 num表示用了几个皇后了
{
if (y == n) y = 0, x++; //当y为一行的最后一个数的时候 ,返回下一行
if (x == n )
{
if (num == n)
{
for (int i = 0; i < n; i++) puts(q[i]);
puts("");
}
return;
}
//不放皇后
dfs(x, y + 1, num);
//放皇后
if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])
{
q[x][y] = 'q';
row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
dfs(x, y + 1, num + 1);
row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
q[x][y] = '.';
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
for (int j = 0; j < n;j++)
q[i][j] = '.';
dfs(0,0,0);
return 0;
}
2、BFS宽度优先搜索
适用于处理的问题 只有当边权都一样的时候(比如边权都是1)才可以使用BFS
BFS即Breadth First Search,即广度优先搜索。如果说DFS是一条路走到黑的话,BFS就完全相反了。BFS会在每个岔路口都各向前走一步。因此其遍历顺序如下图所示:
我们发现每次搜索的位置都是距离当前节点最近的点。因此,BFS是具有最短路的性质的。为什么呢?这就类似于我们后面要学习的贪心策略。这里简单地介绍一下贪心,假设我们可以做出12次选择。我们想得到一个最好的方案。那么我们可以在第一次选择的时候,做出当前最好的选择,在第二次选择的时候,再做出那时候最好的选择,由此积累。当我们在每次的选择面前,都做到了当前最好的选择,那么我们就可以由局部最优推出整体最优。
这里也是类似的,我们可以在每次出发的时候,走到离自己最近的点,由此我们每次都保证走最近的,那从局部最近推整体最近,必有一条路是整体最近的。所以我们可以利用BFS做最短路问题。
迷宫题目
给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。最初,有
一个人位于左上角 (1,1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。请问,该人从左上角移动至右下角 (n,m) 处,
至少需要移动多少次。数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1 ≤ n , m ≤ 100 。 1≤n,m≤100。1≤n,m≤100。
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
题解:
这道题算是bfs的一道典型的例题了,下面来介绍一下写这种题的步骤:
1、首先可以在实例的迷宫先标上序号
2、依次去寻找距离原点长度为1、2、3……的坐标,这里举一些特殊的情况:距离为3的点 ,最后可以得到如上图所示
代码
#include <iostream>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int Map[N][N];//记录整个迷宫
int s[N][N];//表示每个点到原点的距离
PII q[N * N];//定义一个队列
//对应着上下左右四个方向
int dx[4] = {-1,+1,0,0};
int dy[4] = {0,0,-1,+1};
int dfs()
{
//初始化一个队列
int hh = 0 , tt = 0;
q[0] = {0,0};
//将s数组初始化成0,每个点到原点的距离都为0
memset(s, -1, sizeof s);
//{0,0}点就在原点 距离为0
s[0][0] = 0;
//当队列不为空
while (hh <= tt)
{
//取出队列的头元素
auto t = q[hh ++ ];
//去初始化s数组
for (int i = 0 ; i < 4; i++)//每一个点都按照可以上下左右四个方向来判断
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x < n && x >= 0 && y < m && y >= 0 && Map[x][y] == 0 && s[x][y] == -1)
{
s[x][y] = s[t.first][t.second] + 1;//新判断的这个点是上一个点到原点的距离 加一
q[++tt] = { x,y };//将判断好的值加进队列中去
}
}
}
return s[n-1][m-1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
cin >> Map[i][j];//输入整个迷宫
cout << dfs() << endl;
return 0;
}
输出路径版本的代码
#include <iostream>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int Map[N][N];//记录整个迷宫
int s[N][N];//表示每个点到原点的距离
PII q[N * N],Prev[N][N];//定义一个队列
//对应着上下左右四个方向
int dx[4] = {-1,+1,0,0};
int dy[4] = {0,0,-1,+1};
int dfs()
{
//初始化一个队列
int hh = 0 , tt = 0;
q[0] = {0,0};
//将s数组初始化成0,每个点到原点的距离都为0
memset(s, -1, sizeof s);
//{0,0}点就在原点 距离为0
s[0][0] = 0;
//当队列不为空
while (hh <= tt)
{
//取出队列的头元素
auto t = q[hh ++ ];
//去初始化s数组
for (int i = 0 ; i < 4; i++)//每一个点都按照可以上下左右四个方向来判断
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x < n && x >= 0 && y < m && y >= 0 && Map[x][y] == 0 && s[x][y] == -1)
{
s[x][y] = s[t.first][t.second] + 1;//新判断的这个点是上一个点到原点的距离 加一
Prev[x][y] = t ; //每次判断好的点 都存储到Prev数组中
q[++tt] = { x,y };//将判断好的值加进队列中去
}
}
}
int x = n - 1, y = m - 1;
while (x || y)
{
//先输出最后一个点的坐标
cout << x << ' ' << y << endl;
//找到最后一个点的前一个点的坐标
auto t = Prev[x][y];
x = t.first, y = t.second;
}
return s[n-1][m-1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
cin >> Map[i][j];//输入整个迷宫
cout << dfs() << endl;
return 0;
}