Stack 栈的实现与应用

目录

1. 概念

2. 常用的栈的方法

2.1 方法

2.2 代码

3. 自己实现栈

3.1 构造MyStack

3.2 push()

3.3 ensureCapacity()

3.4 pop()

3.5 peek()

3.6 empty()

3.7 szie()

4. 栈的应用


1. 概念

        

栈(Stack)是一种数据结构,是一种特殊的线性表,它是按照后进先出(Last-In-First-Out, LIFO)原则工作的线性数据结构。栈中的插入和删除元素的操作只能在栈顶进行,因此栈也被称为“后进先出表”。栈可以用数组或链表实现。

栈最基本的操作是:入栈(Push)、出栈(Pop)和获取栈顶元素(Top)。其中,入栈操作将元素放到栈顶,出栈操作将栈顶元素移除并返回其值,获取栈顶元素则是获取栈顶元素的值但是不移除栈顶元素。

另外,栈还有一些其他的常用操作,如:判断栈是否为空(IsEmpty)、获取栈中元素的个数(Size)、清空栈中的所有元素(Clear)等。

2. 常用的栈的方法

2.1 方法

方法

功能
push()在栈顶插入元素
pop()删除栈顶元素,并返回该元素的值。如果栈为空,则抛出EmptyStackException异常
peek()返回该元素的值。如果栈为空,则抛出EmptyStackException异常
empty()如果栈为空返回true,或者返回false
size()

返回栈内元素个数

2.2 代码

public static void main(String[] args) {
        Stack<Character> stack = new Stack<>();
        //插入A B C
        stack.push('A');
        stack.push('B');
        stack.push('C');
        System.out.println(stack.size());//获得栈中元素个数,打印   3
        System.out.println(stack.pop());//删除并获得栈顶元素 C
        System.out.println(stack.pop());//删除并获得栈顶元素 B
        stack.push('D');//栈顶插入D
        System.out.println(stack.empty());
}

注意:

  • 方法push(),pop(),peek()都是在栈顶执行插入,删除以及检索操作。isEmpty()和size()是标准的集合方法。
  • 栈顶操作的pop(),peek()的执行条件是栈不为空。

3. 自己实现栈

3.1 构造MyStack

Stack是动态顺序表,可以使用数组来实现,则我们需要创建一个数组,还可以用一个创建一个变量记录栈内元素大小。

public class MyStack {
    public int[] elem;
    public int size = 0;
    public MyStack(){
        elem = new int[10];
    }
    //...
}

3.2 push()

先进行判断栈的容量大小是否足够,不够进行栈的扩容,在进行压栈,反之,直接压栈,并将记录栈的大小的size加1;

    //入栈、压栈
    public void push(int val){
        if(size == elem.length){
            ensureCapacity();
        }
        elem[size] = val;
        size++;
    }

3.3 ensureCapacity()

栈中的元素个数不小于容量时,要对容量进行扩容,就是将栈中的元素克隆到更大的数组中。

private void ensureCapacity() {
        elem = Arrays.copyOf(elem,2 * elem.length);
}

3.4 pop()

出栈的时候要进行判断栈是否为空,如果栈为空,抛出EmptyStackException异常,反之,将栈顶元素删除并抛出,记录栈元素大小的size 减1;

    public int pop(){
        if(size == 0 ){
            throw new EmptyStackException();
        }
        return elem[--size];
    }

3.5 peek()

只需要把栈顶元素返回,要进行判断栈是否为空,如果栈为空,抛出EmptyStackException异常。

    //获得栈顶
    public int peek(){
        if(size == 0){
            throw new EmptyStackException();
        }
        int key = size - 1;
        return elem[key];
    }

3.6 empty()

判断size大小,szie = 0; 则返回true,反之false;

    //检查栈是否为空
    public boolean empty(){
        return size == 0;
    }

3.7 szie()

直接返回size大小;

    //栈内元素的个数
    public int size(){
        return size;
    }

4. 栈的应用

  1. 改变元素的序列
  2. 将递归转化为循环
  3. 括号匹配
  4. 逆波兰表达式求值
  5. 最小栈

这些都是较重要的应用,篇幅较大,我就放在了下篇博客,喜欢的可以点我主页查看。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是小辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值