cantor表编号(洛谷P1014)

题目描述

现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/11/1 , 1/21/2 , 1/31/3 , 1/41/4, 1/51/5, …

2/12/1, 2/22/2 , 2/32/3, 2/42/4, …

3/13/1 , 3/23/2, 3/33/3, …

4/14/1, 4/24/2, …

5/15/1, …

我们以 Z 字形给上表的每一项编号。第一项是 1/11/1,然后是 1/21/2,2/12/1,3/13/1,2/22/2,…

输入格式

整数NN(1 \leq N \leq 10^71≤N≤107)。

输出格式

表中的第 NN 项。

 去洛谷论坛看了下题解,全是佬,看不懂,这里记录一种解法吧,找规律

 cantor表写出一些后,左偏头四十五度,可以看出是三角形,底边逐步增长1,且从上往下数时,第几层就有几个数;再对每层进行研究,如果是偶数层,分子从1开始,分母从层数开始,这一层往后的数,分子加一,分母减一;奇数层反之亦然。

所以思路:用等差数列求和公式求S搭配循环,求出是到哪一层S刚好大于等于K(K为输入的编号),再从这一层开始模拟,数到目标编号,即可输出

//cantor表 
#include<bits/stdc++.h>
using namespace std;
#define N 10000000
int main()
{
	int s=0,n=0,k;
	cin>>k;
	while(1)
	{
		n++;
		s=(1+n)*n/2;
		if(s>=k) break;
	}
	int count=k-(s-n);//最后一排第几个 
	int a=0,b=0;//分子,分母 
	if(n%2==0)//偶数
	{
		a=1,b=n;
		for(int i=1;i<count;i++)
			a++,b--;
		cout<<a<<"/"<<b<<endl;
	}
	else
	{
		a=n,b=1;
		for(int i=1;i<count;i++)
			a--,b++;
		cout<<a<<"/"<<b<<endl;
	}
	return 0;
 } 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值