题目描述
现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:
1/11/1 , 1/21/2 , 1/31/3 , 1/41/4, 1/51/5, …
2/12/1, 2/22/2 , 2/32/3, 2/42/4, …
3/13/1 , 3/23/2, 3/33/3, …
4/14/1, 4/24/2, …
5/15/1, …
…
我们以 Z 字形给上表的每一项编号。第一项是 1/11/1,然后是 1/21/2,2/12/1,3/13/1,2/22/2,…
输入格式
整数NN(1 \leq N \leq 10^71≤N≤107)。
输出格式
表中的第 NN 项。
去洛谷论坛看了下题解,全是佬,看不懂,这里记录一种解法吧,找规律
cantor表写出一些后,左偏头四十五度,可以看出是三角形,底边逐步增长1,且从上往下数时,第几层就有几个数;再对每层进行研究,如果是偶数层,分子从1开始,分母从层数开始,这一层往后的数,分子加一,分母减一;奇数层反之亦然。
所以思路:用等差数列求和公式求S搭配循环,求出是到哪一层S刚好大于等于K(K为输入的编号),再从这一层开始模拟,数到目标编号,即可输出
//cantor表
#include<bits/stdc++.h>
using namespace std;
#define N 10000000
int main()
{
int s=0,n=0,k;
cin>>k;
while(1)
{
n++;
s=(1+n)*n/2;
if(s>=k) break;
}
int count=k-(s-n);//最后一排第几个
int a=0,b=0;//分子,分母
if(n%2==0)//偶数
{
a=1,b=n;
for(int i=1;i<count;i++)
a++,b--;
cout<<a<<"/"<<b<<endl;
}
else
{
a=n,b=1;
for(int i=1;i<count;i++)
a--,b++;
cout<<a<<"/"<<b<<endl;
}
return 0;
}