数位统计dp的递推实现模板+洛谷 p2602 数字计数---数位dp

该代码是用C++编写的,用于解决数位统计问题,通过动态规划方法计算两个数之间每个数字出现的次数差异。首先预计算dp数组,然后通过遍历数字处理每一位,考虑各种边界情况,最后输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// 数位统计dp
// 来源:《算法竞赛》 上册 p335
// 题目:洛谷 p2602  数字计数 
#include<bits/stdc++.h>
using namespace std;
/*
 dp[i]=dp[i-1]*10+10^(i-1)
*/
typedef long long ll;
const int N=15;
ll ten[N],dp[N];
ll cnta[N],cntb[N];   // cnt[i],统计数字i出现了多少次
int num[N];
//预计算dp[]
void init()
{
    ten[0]=1;          //ten[i]:10的i次方
    for(int i=1;i<=N;i++)
    {
        dp[i]=i*ten[i-1];
        ten[i]=10*ten[i-1];
    }
}
void solve(ll x,ll *cnt)
{
    int len=0;            // 数字x有多少位
    while(x)
    {
        num[++len]=x%10;
        x/=10;
    }
    for(int i=len;i>=1;i--)     // 从高到低处理x的每位
    {
        //1,普通情况
        for(int j=0;j<=9;j++) cnt[j]+=num[i]*dp[i-1];
        //2,特判最高位<num[len]
        for(int j=0;j<num[i];j++) cnt[j]+=ten[i-1];
        //3,特判最高位==num[len]
        ll num2=0;
        for(int j=i-1;j>=1;j--) num2=num2*10+num[j];
        cnt[num[i]]+=num2+1;
        //4,特判前导0
        cnt[0]-=ten[i-1];
    }
}
int main()
{
    init();
    ll a,b;
    cin>>a>>b;
    solve(a-1,cnta);
    solve(b,cntb);
    for(int i=0;i<=9;i++) cout<< cntb[i]-cnta[i]<< " ";
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值