** 区间dp模板
for(int len=1;len<=n;len++) // 枚举长度
{
for(int i=1;i+len-1<=n;i++) //枚举起点
{
int j=i+len-1;
for(int k=i;k<j;k++) //枚举分割点,更新小区间最优解
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s[j]-s[i-1]);
}
}
}
** 2057 - 合并石子 --- 区间dp
** 来源: 东方博宜oj oj.czos.cn
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int f[N][N]; // [l,r]合并区间内的数对应的最小得分
int s[N]; // 前缀和
int n;
int main()
{
cin>>n;
//初始化
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++)
{
cin>>s[i];
s[i]+=s[i-1]; //求前缀和
f[i][i]=0; //初始化,合并自己默认得分为0
}
for(int len=2;len<=n;len++)
{
for(int l=1;l+len-1<=n;l++)
{
int r=l+len-1;
for(int k=l;k<r;k++)
{
f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
}
}
}
cout<< f[1][n];
return 0;
}
区间dp模板 + 2057 - 合并石子 ---区间dp
最新推荐文章于 2024-11-03 16:33:21 发布
文章介绍了如何使用区间动态规划解决合并石子问题,通过初始化前缀和,然后迭代计算不同长度和起始点的子区间内合并的最小得分,最终得出整个序列的最小得分。
摘要由CSDN通过智能技术生成