P1304 哥德巴赫猜想 ---素数筛

该程序使用C++实现了一个线性筛法求解素数,并应用此方法验证哥德巴赫猜想,即检查所有大于等于4的偶数是否可以表示为两个质数之和。程序首先找到给定范围内的所有素数,然后组合这些素数来寻找符合猜想的配对。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**P1304 哥德巴赫猜想 ---素数筛
**来源:洛谷
#include<bits/stdc++.h>
using namespace std;
const int N=1e4+10;
int n;
bool f[N],f1[N];
struct node
{
    int x,y,z;
}a[N];
bool cmp(node x1,node x2)
{
    return x1.z<x2.z;
}
int len=0;
int primes[N],cnt=0;
int main()
{
    cin>>n;
    f[0]=1;
    f[1]=1;
    // 线性筛,求出所有素数
    for(int i=2;i<=n;i++)
    {
        if(!f[i]) primes[++cnt]=i;
        for(int j=1;i*primes[j]<=n;j++)
        {
            f[i*primes[j]]=1;
            if(i%primes[j]==0) break;
        }
    }
    int now;
    for(int i=1;2*primes[i]<=n;i++)
    {
        for(int j=i;j<=cnt;j++)
        {
            now=primes[i]+primes[j];
            if(now>=4&&now<=n&&now%2==0&&f1[now]==0)
            {
                f1[now]=1;
                a[++len].z=now;
                a[len].x=primes[i];
                a[len].y=primes[j];
            }
        }
    }
    sort(a+1,a+1+len,cmp);
    for(int i=1;i<=len;i++)
    {
        cout<< a[i].z<< "="<< a[i].x<< "+"<<a[i].y<<endl;
    }
    return 0;
}

### PTA 7-8 哥德巴赫猜想 编程实现 #### 题目大意 给定一个偶数 \( n \),验证哥德巴赫猜想:任何大于2的偶数都可以表示成两个素数之和。程序需输入一个正整数 \( N (N<10^6) \),并输出该范围内所有满足条件的偶数及其对应的两素数组合。 #### 解题思路 为了有效解决问题,可以采用如下策略: - **预处理**:预先计算一定范围内的所有素数,并存储在一个列表中以便快速查找。 - **遍历求解**:对于每一个待检验的偶数,在预存的素数表里寻找符合条件的一对素数[^1]。 #### 代码思路 下面是一个简单的Python实现方案,包括了基本逻辑结构: ```python def sieve_of_eratosthenes(limit): primes = [] is_prime = [True] * (limit + 1) p = 2 while p * p <= limit: if is_prime[p]: for i in range(p * p, limit + 1, p): is_prime[i] = False p += 1 for p in range(2, limit + 1): if is_prime[p]: primes.append(p) return primes def goldbach_conjecture(n): results = {} # 获取小于等于n的所有质数 prime_numbers = sieve_of_eratosthenes(n) for num in range(4, n + 1, 2): # 只考虑偶数 found = False for prime in prime_numbers: if prime >= num / 2 and not found: break partner = num - prime if partner in set(prime_numbers): results[num] = (prime, partner) found = True return results if __name__ == "__main__": N = int(input()) result_dict = goldbach_conjecture(N) for key, value in sorted(result_dict.items()): print(f"{key}={value[0]}+{value[1]}") ``` 此段代码首先定义了一个埃拉托斯特尼法来获取指定上限内所有的素数,接着通过`goldbach_conjecture()`函数实现了针对每个偶数找到其作为两个素数之和的具体情况。 #### 核心技术总结 本题的核心在于高效地找出特定区间内的全部素数,并能够迅速判断某个数值是否为素数。这里采用了经典的埃拉托斯特尼法来进行初步选,大大提高了后续运算效率。 #### 存在的问题及解决方案 最初尝试直接在线性时间内逐一检测各偶数能否分解为两个素数相加的形式时遇到了性能瓶颈。后来改为先利用埃氏一次性获得大量素数后再做匹配,则显著改善了解决速度与资源消耗状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值