- 博客(9)
- 收藏
- 关注
原创 PCA降维
PCA(主成分分析)是一种统计技术,用于简化数据集,通过减少维数的同时尽可能保留数据的主要特征。本文将详细介绍PCA的原理及具体步骤。
2024-06-18 16:41:02 311
原创 机器学习之支持向量机
支持向量机(Support Vector Machine,简称 SVM)是一种非常强大且灵活的监督学习算法,用于分类和回归任务。其基本思想是在特征空间中找到一个最优的超平面,将不同类别的样本分开,并且使得超平面与最近的样本点的距离(也称为间隔)最大化。超平面(Hyperplane):在一个n维空间中,超平面是一个n-1维的平面,它将空间划分为两个部分。在二维空间中,超平面是一条直线,而在三维空间中,超平面是一个平面。间隔(Margin):超平面与离它最近的样本点之间的距离称为间隔。
2024-06-11 15:27:58 247
原创 数字图像处理均衡化
figure, subplot(2,2,1), imshow(T), title('原图');subplot(2,2,2), imhist(T), title('原图的直方图');subplot(2,2,4), imhist(T), title('均衡化后的直方图')subplot(2,2,3), imshow(T), title('均衡化的图');% 计算灰度分布密度(归一化处理)% 对图像进行均衡化处理。% 显示处理前的图像。% 计算累计分布函数。% 显示处理后的图像。
2024-05-30 17:13:45 146
原创 机器学习之逻辑回归分类器
逻辑回归的参数 (w) 通常是通过最大化似然函数或最小化损失函数来进行训练的。:对于给定的输入特征 (x),通过模型的参数 (w) 计算 (z),然后将其输入到逻辑函数中,得到预测的概率 (h(z)),通常取概率大于0.5的类别作为预测结果。逻辑函数的输出范围在0到1之间,且当 (z) 趋近正无穷时,(h(z)) 趋近1;这里 (z) 是输入特征的线性组合,(w_0, w_1, \ldots, w_n) 是模型的参数,(x_1, x_2, \ldots, x_n) 是输入特征。
2024-05-29 16:36:35 1505
原创 机器学习——朴素贝叶斯分类器
朴素贝叶斯分类器的基本思想是利用训练数据学习类别的先验概率和每个特征在各个类别下的条件概率,然后根据贝叶斯定理计算后验概率,从而进行分类。其中特征1表示天气,用数字1、2、3表示晴天、阴天和下雨。特征2表示场地,用字母'S'、'M'、'L'表示小型、中型和大型场地。标签为:[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1]完善代码并根据贝叶斯定理计算后验概率,并预测样本的类别。
2024-05-14 22:29:34 316 2
原创 机器学习之决策树的算法
在这个案例中,两种算法可能会选择相同的分裂特征,即节点的游戏时间是否长。CART算法生成的树是二叉树,而ID3算法生成的树可能是多叉树。在决策树中,每个内部节点表示一个属性上的测试,每个分支代表测试的结果,每个叶子节点代表一种类别或者一个数值。决策树的生成过程是一个自顶向下的递归划分数据的过程,直到达到某个停止条件为止。因此,在实际应用中,通常会使用ID3的改进版本,如C4.5算法。总的来说CRAT算法的优势在于它能够处理复杂的约束条件,并且能够灵活地调整资源分配,以满足多样化的需求。
2024-04-29 20:28:38 1652
原创 机器学习之模型评估
模型的预测结果被排序,并根据不同的阈值判断样本的分类结果,从而生成不同的召回率和误报率。精确率和召回率通常在一起使用,因为它们提供了不同方面的信息:精确率关注预测为正类别的样本中的准确性,而召回率关注模型找出所有正类别样本的能力。其中,True Positives 是模型正确预测为正类别的样本数量,False Positives 是模型错误预测为正类别的负样本数量。其中,“正确分类的样本数”指的是模型在测试数据集中正确分类的样本数量,“总样本数”则是测试数据集中的全部样本数量。
2024-04-15 20:22:49 600 1
原创 KNN算法
KNN(K-最近邻)算法是一种用于分类和回归的基本机器学习算法。在KNN分类中,当需要对新数据点进行分类时,算法会查找与该数据点最相似的K个训练数据点(最近邻),然后通过这K个最近邻的投票来确定新数据点所属的类别。在KNN回归中,算法会根据最近邻点的值来对新数据点进行预测。KNN算法的工作原理很简单,但在实践中却十分有效。它无需事先训练模型,而是存储训练集,并且在进行预测时需要对测试数据集进行比较。KNN算法的性能受到K值的选择、距离计算方法和特征标准化等因素的影响。
2024-04-01 21:33:02 1447
原创 Anaconda安装和配置环境及PyCharm集成指南
为了方便开发者进行Python相关项目的开发和管理,Anaconda成为了一个备受推崇的工具,它提供了一个完整的Python生态系统,包括环境管理、软件包安装等功能。Anaconda是Python数据科学、机器学习和科学计算的首选工具之一,而PyCharm作为一款强大的集成开发环境(IDE),与Anaconda的结合可以提升开发效率。本文将详细介绍Anaconda的安装、环境配置过程,以及如何将Anaconda环境与PyCharm进行集成,帮助读者快速搭建Python开发环境。
2024-03-19 16:36:43 520 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人