网络安全类外文文献毕业论文(期刊论文,学位论文)翻译

1篇报告讨论了自动驾驶引入AI时的网络安全挑战,由ENISA和JRC发布;另一篇关注基于硬件的网络安全解决方案,而第三篇则介绍了基于机器学习的入侵检测在网络安全中的应用,强调了效率提升和误报管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.[期刊论文]Herausforderungen für die Cybersicherheit bei der Einfüh- rung künstlicher Intelligenz beim autonomen Fahren - Bericht von ENISA und JRC

标题翻译:网络安全在自动驾驶中引入人工智能中的网络安全挑战 - Enisa和JRC的报告

期刊:《Polizei,verkehr+Technik》 | 2021 年第 2 期

摘要:Dieser Bericht, der gemeinsam von der Agentur der Europäischen Union für Cybersicherheit ENISA und der Gemeinsamen Forschungsstelle JRC der EU-Kommission erstellt wurde, soll Einblicke in die Herausforderungen der Cybersicherheit geben, die speziell mit der Einführungvon Kl-Techni-ken in autonomen Fahrzeugen (AV) verbunden sind. Es beschreibt den politischen Kontext sowohl auf europäischer als auch auf internationaler Ebene. Anschließend werden die technischen Aspekte der Kl im Automobilsektor untersucht, um die technologischen Belange besser zu verstehen und ein Gefühl für den Grad der Integration der Kl in die AV zu bekommen. Dies beinhaltet eine erweiterte Beschreibung der Bereiche, in denen Kl eine Rolle spielt, um die ordnungsgemäße Implementierung kognitiver Fähigkeiten in Fahrzeugsystemen sicherzustellen. Nach dieser technischen Präsentation folgt eine hochmoderne Literaturübersicht zur Sicherheit der Kl im Automobilkontext. Eine Reihe von Herausforderungen und Empfehlungen wird ebenfalls bereitgestellt, um die Kl-Sicherheit in AVs zu verbessern und potenzielle Bedrohungen und Risiken zu mindern.

翻译:该报告是由欧洲联盟机构网络安全ENISA和欧盟委员会联合研究中心JRC创建的,应该能让人们了解网络安全的挑战,特别是引进KL-Techni-的连接在自动车辆(AV)中的肯。它描述了欧洲和国际层面的政治背景。随后,KL的汽车行业技术方面进行考察,以更好地了解技术事项,并拿到学位吉隆坡的融入AV感。这包括kl发挥作用以确保在车辆系统中的认知能力的正确实施的扩展描述。在本技术演示之后,在汽车背景下的KL安全的最先进的文献概述。也将提供许多的挑战和建议,以改善KL安全AVS和降低潜在的威胁和风险。

---------------------------------------------------------------------------------------------------------------------------------

2.[期刊论文]Hardware-Based Cybersecurity Rather Than Software-Based

标题翻译:基于硬件的网络安全而不是基于软件的网络安全

期刊:《Public utilities fortnightly》 | 2021 年第 1 期

摘要:Last year, Q-Net Security, Inc. announced the development of a hardware-based cybersecurity (hardsec) defense system capable of making legacy infrastructure and other systems impregnable and resilient to external cyberattack. PUF sat down with the founder and CEO of Q-Net, Dr. Ron Indeck, to learn more about his new venture. Before founding Q-Net, Dr. Ron Indeck started two other computer technology firms, VelociData and Exegy. Earlier in his academic career he served for two decades as the Das Family Distinguished Professor of Electrical Engineering, and the Director of the Center for Technology Security at Washington University in Saint Louis. While teaching and performing fundamental applied research, Dr. Indeck authored over sixty peer-reviewed papers, and has been awarded more than a hundred patents.

翻译:去年,Q-Net Security,Inc。宣布开发基于硬件的网络安全(Hardsec)防御系统,能够制作遗留基础设施和其他系统可坚不可摧的和弹性到外部网络攻击。 Puf与Q-Net的创始人和首席执行官坐下来,罗恩博士,更多地了解他的新风险。在创立Q-Net之前,Ron博士曾开始了另外两家计算机技术公司,Velocidata和Exegy。他的学术职业早些时候,他为DAS家族杰出教授电气工程教授,以及圣路易斯华盛顿大学技术安全中心主任。在教学和表演基础应用的研究时,博士意见撰写超过六十同行评审的论文,并获得了超过一百多的专利。

---------------------------------------------------------------------------------------------------------------------------------

3.[期刊论文]Application of intrusion detection technology in network safety based on machine learning

标题翻译:基于机器学习的网络安全中入侵检测技术在网络安全中的应用

期刊:《Safety science》 | 2020 年第 期

摘要:As an important means to ensure network safety, intrusion detection technology can be much more efficient by introducing machine learning. The present paper proposes a machine learning method for intrusion information detection, which can fully exploit the envelope advantages of Elman neural network and the advantages of robust SVM noise data elimination, and can then combine the two to solve the safety risks of intrusion detection of information systems to ensure the safety of information systems. Elman neural network intrusion detection clusters the text of the network packet by clustering algorithm, which largely reduces the defect of missing text information. It also improves the ability to detect abnormal behaviour between network packet sequences. Meanwhile, robust SVM neighbour classification intrusion detection can achieve the feature space weighting of the optimal classification face host system log, eliminate the negative impact of noise data, reduce the false alarm rate of intrusion detection, and improve the detection accuracy. The result shows that when the false alarm rate is 0, the intrusion detection rate based on robust SVM neighbour classification can achieve 87.3%; when the false alarm rate is 2.8%, the detection rate can reach as high as 100%.

翻译:作为确保网络安全的重要手段,通过引入机器学习,入侵检测技术可以更有效。本文提出了一种用于入侵信息检测的机器学习方法,可以充分利用ELMAN神经网络的包络优势以及鲁棒SVM噪声数据消除的优点,然后可以组合两者来解决信息的入侵检测的安全风险系统以确保信息系统的安全性。 ELMAN神经网络入侵检测通过聚类算法群集网络包的文本,这在很大程度上减少了丢失文本信息的缺陷。它还提高了检测网络分组序列之间异常行为的能力。同时,鲁棒SVM邻居分类入侵检测可以实现最优分类面部主机系统日志的特征空间加权,消除噪声数据的负面影响,降低了入侵检测的误报率,提高了检测精度。结果表明,当误报率为0时,基于强大的SVM邻居分类的入侵检测率可以实现87.3%;当误报率为2.8%时,检测率可以高达100%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值