Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记

目录

一、认识ComfyUI

1.1 主流GUI

1.2 Comfy UI的基础逻辑

1.3 ComfyUI的优势

二、下载Comfy UI

2.1 Comfy UI的使用

三、拓展知识

四、LoRA微调

4.1 LoRA微调的本质

4.2 LoRA微调的代码展示

4.3  UNet、VAE和文本编码器的协作关系

4.4  图文数据


 本篇文章是在task01和task02的基础上,对模型进行微调,了解其中的原理,并作出更高级别的模型从而方便使用。这个Task中会给大家介绍一下文生图的工作流平台工具ComfyUI,来实现一个更加高度定制的文生图。


一、认识ComfyUI

1.1 主流GUI

  本部分部分参考b站up主(点击即可跳转)。

     图形用户界面(Graphical User Interface,简称 GUI):是计算机图形学技术的一种,它一般由窗口、下拉菜单或者对话框等图形化的控件组成。用户通过点击菜单栏、按钮或者弹出对话框的形式来实现与机器的交互,GUI 的存在拉近了人与计算机的的距离,让人机交互的过程变得简单舒适、有温度。

     三种主流GUI:第一种是使用范围最广的以窗口为特征的Web UI。第二种是节点式工作流为特征的并且方便作为后端使用的Comfy UI。第三种就是只需关注提示词无需在乎各种复杂参数就可以获得极高质量生成效果的Fooocus。

     那么开始介绍我们今天的主角Comfy UI:ComfyUI 是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术,ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。这些节点可以连接起来形成一个工作流程,这样用户就可以根据需要定制自己的图像生成过程。Comfy UI本身不仅仅可以作为后端来使用,而且还可以作为插件加入其他GUI中。Comfy UI更加接近于一种SD的原理,也更像是一个通用的可视化代码平台。

      对于它本身来说,是以节点搭建工作流,类似一种乐高搭建积木的感觉适用于长线工作。与此同时他的速度也很快,不限于GPU或者CPU,方便工作者的使用。 作为插件来说,一种是作为Web UI的插件,一种是作为Blender的插件。作为后端来说,一种是作为Comfy Box的后端,另一种就是官方推荐的一款前端界面的Swarm UI。还有一个以Comfy UI作为后端的项目,主流之一的fooocus。

       对于这三种主流的GUI来说他们的使用场景不同:如果只想简单的通过提示词获得高质量图像那就选择fooocus简单省时省力,如果需要丰富好用的插件或者更习惯图文框式的操作界面那就选择Web UI。如果需要长线,定制化,自动化的专业使用那就选择Comfy UI。如果即想要Comfy UI的灵活性又想要图文框式的操作界面那就选择以Comfy UI作为后端的几种前端页面。

1.2 Comfy UI的基础逻辑

      Comfy UI的核心模块由模型加载器(核心模块由模型加载器、提示词管理器、采样器、解码器。)、提示词管理器(核心模块由模型加载器、提示词管理器、采样器、解码器。)、采样器 (核心模块由模型加载器、提示词管理器、采样器、解码器。)、解码器(核心模块由模型加载器、提示词管理器、采样器、解码器。)。

      首先我们围绕Comfy UI的基础逻辑展开认识,他的构建类似于一个搭建积木,第一先需要组件,然后构造,再接下来成为结构,便可以实现功能。也就是从模块到模组再到功能组成为工作流最后实现目标一样。而实现就是这个逆过程。

      那么我们开始从下到上介绍各个区域,首先就是模块也可以叫节点英文名nodes,把模块和模组放在一起来介绍,其核心包括采样器,加载器,条件,潜空间,图像,蒙版,通用等七大组,除了核心之外,还有客制等部分。

       说完模块和模组,接下来来到功能组,来到两大提示词输入,文本提示词由CLIP模型+正负提示词输入组成。图像提示词由图像编码器接入条件编码器模型以及图像组成,这两种功能组最终都已经条件作为输出。然后就是初始噪声和controlnet,初始噪声有三种模式,第一种是最常用到的潜空间噪声,也就是平时看到的emptylatentimage模块另外就是像素噪声图,可以通过刚刚提到的第三方模组生成然后经过VAE编码器进入潜空间,还有就是将图像经过VAE编码进入潜空间的方式(就是图生图的方式)。对于CN,则是通过一个处理器接入CN模型,条件以及预处理的特定图像通过选择与CN模型相匹配的预处理器完成控制最终以条件输出。来到最核心的采样器部分,分别以主模型,正负条件和潜空间噪声图作为输入最后以潜空间作为输出,其他还有很多不再一一说明。

    将需要的功能组组合在一起便生成了工作流基本的原理图如下图所示

1.3 ComfyUI的优势

模块化和灵活性:ComfyUI 提供了一个模块化的系统,用户可以通过拖放不同的模块来构建复杂的工作流程。这种灵活性允许用户根据自己的需求自由组合和调整模型、输入、输出、和其他处理步骤。

可视化界面:ComfyUI 提供了直观的图形界面,使得用户能够更清晰地理解和操作复杂的 AI 模型和数据流。这对没有编程背景的用户特别有帮助,使他们能够轻松构建和管理工作流程。

多模型支持:ComfyUI 支持多个不同的生成模型,用户可以在同一平台上集成和切换使用不同的模型,从而实现更广泛的应用场景。

调试和优化:通过其可视化界面,ComfyUI 使得调试生成过程变得更简单。用户可以轻松地追踪数据流,识别并解决问题,从而优化生成结果。

开放和可扩展:ComfyUI 是一个开源项目,具有高度的可扩展性。开发者可以根据需要编写新的模块或插件,扩展系统功能,并根据项目需求进行定制。

用户友好性:尽管其功能强大,但 ComfyUI 仍然保持了用户友好性,即使对于复杂任务,也能以相对简单的方式完成,使其成为生成式 AI 工作流程管理的有力工具。

二、下载Comfy UI

   回到我们的魔搭社区(点击跳转),利用免费算力来下载

  开启之后点击左上角的file,点击新建,然后点击Terminal,把下面的代码粘贴进去。

git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors_test_comfyui.git
mv kolors_test_comfyui/* ./
rm -rf kolors_test_comfyui/
mkdir -p /mnt/workspace/models/lightning_logs/version_0/checkpoints/
mv epoch=0-step=500.ckpt /mnt/workspace/models/lightning_logs/version_0/checkpoints/   

  下一步点击运行,也就是上面一筐倒数第三个按键开始运行的图如下所示。

     运行时间较长,耐心等待。

    运行结束之后会出现一个访问链接,点击链接This is the URL to access Comfy UI,(我这里出现一个时间超了的问题asyncio.exceptions.TimeoutError,可以重启再试试)

2.1 Comfy UI的使用

    进入Comfy UI,但进入之后还需要上传文件,在这里我补充一个名词,你们知道的跳过就行。(PS:如果链接访问白屏,或者报错,就等一会再访问重试,程序可能没有正常启动完毕

      LORA是Low-Rank Adaptation的缩写,最早在2021年论文《LoRA: Low-Rank Adaptation of Large Language Models》中提出。是一种大语言模型低秩适配器,简单来说就是它可以降低模型可训练参数,使其尽量不损失模型表现的大模型微调方法,
     在此之前,StableDiffusion只能通过使用Dreambooth的方法训练大模型,如果对大模型的效果不满意,那么就只能从头开始,重新训练,但是大模型的训练要求高,算力要求大,速度慢。自从LORA被引入StableDiffusion后,大大降低了训练门槛,并扩宽了产出模型的适用范围。这就使得我们这些对AI绘画感兴趣的非专业人员,也可以在家用电脑上尝试训练自己的LORA模型。

    LoRA现在已经广泛应用于商业场景中,将IP形象训练成LORA就大大节省了运营去根据不同活动不同场景结合IP绘制的时间;在电商领域,可以将衣服训练成LORA,就不需要请模特,或者拍摄,直接用AI生成模特,使用LORA给AI模特穿上特定的服饰;很多需要真人出镜拍摄的场景,也可以使用LoRA模型,让一切变的简单可操作。

   接下来需要下载工作流脚本(我网盘空间不知道为啥不够了,太麻烦了我就把文件放在文章最开头了,需要的自己拿)在文章最上面,打开之后是这个界面,点击load(那个负荷),选择下载的json文件,一个是带有Lora的一个是不带的,然后等待生成图片,生成图片的时间可能有点长,需要耐心等待。

三、拓展知识

在魔搭使用ComfyUI,玩转AIGC!:https://modelscope.cn/headlines/article/429

ComfyUI的官方地址:https://github.com/comfyanonymous/ComfyUI

ComfyUI官方示范:https://comfyanonymous.github.io/ComfyUI_examples/

别人的基础工作流示范:https://github.com/cubiq/ComfyUI_Workflows                                        https://github.com/wyrde/wyrde-comfyui-workflows

工作流分享网站:https://comfyworkflows.com/

推荐一个比较好的comfyui的github仓库网站:https://github.com/ZHO-ZHO-ZHO/ComfyUI-Workflows-ZHO?tab=readme-ov-file

四、LoRA微调

4.1 LoRA微调的本质

    LoRA (Low-Rank Adaptation) 微调是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。这对于推动大规模预训练模型的实际应用至关重要。

     微调的本质:把模型通过数据训练成另外一个新的模型,而模型的本质又是有一群参数构成的,那么新的模型就是通过原来的参数经过某种修改从而形成新的模型,所以本质就是修改模型的参数,保留原模型的部分功能,放大模型的部分能力。

   区别:这里面的参数全都通过学习的方法得出便是全量微调。

              用更少量的资源进行得出参数的方法就叫PEFT,LoRA便是其中一种。

   因为有的数据可能是多余的,也就是利用了大量的资源,而得出多余的重复的参数,得到有价值的数据,扩大想要的模型功能,所以为了高效的学习,我们引入一个矩阵进行说明。

    W是一个100*100的矩阵,他包含1w条数据,但是他可以拆分成A和B两个矩阵,而他们含有的参数为=100*k*2,大大的降低了参数的含量,从而使得更少的资源得到了充分的利用,这就是LoRA微调的基本思想

   W_{100*100} = A_{100*k} * B_{k*100}

 LoRA微调的原理: LoRA通过在预训练模型的关键层中添加低秩矩阵来实现。这些低秩矩阵通常被设计成具有较低维度的参数空间,这样它们就可以在不改变模型整体结构的情况下进行微调。在训练过程中,只有这些新增的低秩矩阵被更新,而原始模型的大部分权重保持不变。

LoRA的优势

     快速适应新任务:在特定领域有少量标注数据的情况下,也可以有效地对模型进行个性化调整,可以迅速适应新的领域或特定任务。

     保持泛化能力:LoRA通过微调模型的一部分,有助于保持模型在未见过的数据上的泛化能力,同时还能学习到特定任务的知识。

     资源效率:LoRA旨在通过仅微调模型的部分权重,而不是整个模型,从而减少所需的计算资源和存储空间。

4.2 LoRA微调的代码展示

     在task02中的微调代码。

import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
  --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
  --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
  --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
  --lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
  --lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
  --dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
  --output_path ./models \ # 指定输出路径,用于保存模型
  --max_epochs 1 \ # 设置最大训练轮数为 1
  --center_crop \ # 启用中心裁剪,这通常用于图像预处理
  --use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
  --precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练    

这是部分参数对应相关解释。

4.3  UNet、VAE和文本编码器的协作关系

  • UNet:负责根据输入的噪声和文本条件生成图像。在Stable Diffusion模型中,UNet接收由VAE编码器产生的噪声和文本编码器转换的文本向量作为输入,并预测去噪后的噪声,从而生成与文本描述相符的图像

  • VAE:生成模型,用于将输入数据映射到潜在空间,并从中采样以生成新图像。在Stable Diffusion中,VAE编码器首先生成带有噪声的潜在表示,这些表示随后与文本条件一起输入到UNet中

  • 文本编码器:将文本输入转换为模型可以理解的向量表示。在Stable Diffusion模型中,文本编码器使用CLIP模型将文本提示转换为向量,这些向量与VAE生成的噪声一起输入到UNet中,指导图像的生成过程

4.4  图文数据

首先明确需求目的

  • 关注应用场景:确定你的模型将被应用到什么样的场景中(例如,艺术风格转换、产品图像生成、医疗影像合成等)。

  • 关注数据类型:你需要什么样的图片?比如是真实世界的照片还是合成图像?是黑白的还是彩色的?是高分辨率还是低分辨率?

  • 关注数据量:考虑你的任务应该需要多少图片来支持训练和验证。

数据集来源整理

数据类型推荐
公开数据平台
  • ImageNet:包含数百万张图片,广泛用于分类任务,也可以用于生成任务。

  • Open Images:由Google维护,包含数千万张带有标签的图片。

  • Flickr:特别是Flickr30kK和Flickr8K数据集,常用于图像描述任务。

  • CelebA:专注于人脸图像的数据集。

  • LSUN (Large-scale Scene Understanding):包含各种场景类别的大规模数据集。

利用API或者爬虫获取
  1. 如果需要特定类型的内容,可以利用API从图库网站抓取图片,如Unsplash、Pexels等。

  2. 使用网络爬虫技术从互联网上抓取图片,但需要注意版权问题。

数据合成

利用现有的图形引擎(如Unity、Unreal Engine)或特定软件生成合成数据,这在训练某些类型的模型时非常有用。

最近Datawhale联合阿里云天池,做了一整套多模态大模型数据合成的学习,欢迎大家一起交流。从零入门多模态大模型数据合成

数据增强

对于较小的数据集,可以通过旋转、翻转、缩放、颜色变换等方式进行数据增强

购买或定制

如果你的应用是特定领域的,比如医学影像、卫星图像等,建议从靠谱的渠道购买一些数据集。

补充:之前task01那个美学评分我现在才看到,在官网上面我复制过来。

import torch, os
from PIL import Image
from transformers import CLIPProcessor
from aesthetics_predictor import AestheticsPredictorV2Linear
from modelscope import snapshot_download


model_id = snapshot_download('AI-ModelScope/aesthetics-predictor-v2-sac-logos-ava1-l14-linearMSE', cache_dir="models/")
predictor = AestheticsPredictorV2Linear.from_pretrained(model_id)
processor = CLIPProcessor.from_pretrained(model_id)
device = "cuda"
predictor = predictor.to(device)


def get_aesthetics_score(image):
    inputs = processor(images=image, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = predictor(**inputs)
    prediction = outputs.logits
    return prediction.tolist()[0][0]


def evaluate(folder):
    scores = []
    for file_name in os.listdir(folder):
        if os.path.isfile(os.path.join(folder, file_name)):
            image = Image.open(os.path.join(folder, file_name))
            scores.append(get_aesthetics_score(image))
    if len(scores) == 0:
        return 0
    else:
        return sum(scores) / len(scores)


score = evaluate("./images")
print(score)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值