1.介绍:
二分法查找(又称折半查找),是一种在特定区间查找目标元素的搜索算法。通常情况下要查找的区间,需要是有序且无重复元素的,如果元素无序,则需要对所有元素先进行排序。
算法思想:
采用分治的思想,将有序的元素一分为二(左半区与右半区),抛弃不存在目标元素的半区,在剩下的半区继续重复以上步骤。
时间复杂度:O(logn)
算法实现条件:
- 排序好的数组(升序或降序)
- 数组中无重复元素
2.代码实现:
//nums必须是有序的数组,target为要查找的目标元素
public static int binarySearch(int []nums,int target) {
int left = 0;
int right = nums.length - 1;
int mid = 0;
while (left <= right) {
// >>> 是无符号右移,可以防止(left + right)结果的数据溢出问题
mid = (left + right) >>> 1;
if (nums[mid] == target) {
// 找到目标值,返回索引
return mid;
} else if (nums[mid] < target) {
// 目标值在右半区
left = mid + 1;
} else {
// 目标值在左半区
right = mid - 1;
}
}
// 如果找不到目标值,返回它应当插入的位置
return -left;
}
3.总结:
二分法的平均时间复杂度为O(log n),是一种非常高效的查找算法,尤其适用于数据量大且已经排序的情况。但是它也有局限性,比如它依赖于数组是已经排序的,如果数组未排序,则需要先进行排序,这会带来额外的开销。此外,二分查找不适合于那些频繁插入和删除操作的数据结构,因为这样的操作可能会破坏数组的有序性。