自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 LangGraph中 状态设计模式

LangGraph的核心优势在于其强大的状态管理能力,通过共享状态对象驱动整个图的执行。其StateGraph API采用显式状态管理,需要预先定义状态结构(TypedDict),各节点通过更新状态实现信息传递。这种设计支持复杂决策逻辑、循环执行和回溯,提升可调试性。相比函数式API,状态设计模式更适合构建需要记忆和多步决策的复杂代理系统,而函数式模式则适用于简单线性工作流。LangGraph的状态管理机制为构建智能多步推理的LLM代理提供了独特优势。

2025-09-22 17:16:35 893

原创 langGraph中StateGraph API与functional API的区别

特性核心思想状态驱动,通过一个显式的全局状态对象管理信息流。函数驱动,通过函数链式调用或直接连接传递输入输出。状态管理显式且集中,所有节点共享和更新一个状态。隐式且分散,每个节点的输入是前一个节点的输出。适用场景复杂的、多轮次的、需要维护上下文的代理(如:对话机器人、多步骤任务执行)。简单、线性的、或节点间输入输出关系清晰的工作流。代码复杂性初始设置需要定义状态类,但后续节点逻辑清晰。无需额外设置,但如果工作流复杂,逻辑可能分散在多个函数间。可调试性优秀。可以随时检查和修改全局状态。良好。

2025-09-22 17:04:44 575

原创 LandChain架构及核心模块概览【一文读懂langchain】

Memory 是实现对话连贯性的核心。从 ConversationBufferWindowMemory开始,它适用于 80% 的场景,是性能和资源消耗的最佳平衡点。如果需要更精细地利用上下文窗口,选择 ConversationTokenBufferMemory。只有在需要处理非常长的对话,并且能够接受额外成本和延迟时,才使用 ConversationSummaryBufferMemory。务必确保memory_key和 Prompt 中的占位符变量名一致,这是最常见的错误来源。

2025-08-05 22:13:31 1206

原创 RAG 工作机制详解

RAG(检索增强生成)技术通过"先检索后生成"的方式解决传统知识库的瓶颈问题。其流程分为准备和回答两阶段:准备阶段对文档分片并建立向量索引;回答阶段通过检索-重排-生成三步生成精准答案。关键技术包括文档分片、向量索引构建、相似度召回、cross-encoder重排和大模型生成五个环节,有效突破了上下文限制,降低了计算成本,显著提升了智能问答系统的准确性和响应效率。该技术已广泛应用于企业知识客服等场景。

2025-07-27 16:50:16 935

原创 AI Agent:智能时代的新生产力引擎

**AI Agent(人工智能代理)**是一种自主感知环境、推理决策并采取行动的软件实体,具有目标导向、自主性、感知-决策-行动闭环以及学习适应能力等特征。其核心模块包括感知模块(多源输入处理、语义理解与检索增强)、推理与决策模块(链式思考、任务规划与协同推理)、执行模块(工具调用与反馈调整)以及记忆与学习模块(持久存储与上下文维持)。AI Agent可分为路由型、状态机型和自主型三种运行模式,适用于不同复杂度任务。开发框架如LangChain和LangGraph支持多步推理、工具调用及复杂流程构建,广泛应

2025-07-27 15:44:16 1131

原创 大模型工具调用:Function Calling与MCP的区别

摘要: Function Calling和MCP是两种不同的外部工具集成方法。Function Calling通过训练模型直接生成结构化JSON函数调用对象,实现自动化工具调用,适用于复杂场景但开发成本较高。MCP则通过上下文提示工程引导模型生成文本指令,由外部系统解析执行,实现简单但依赖提示质量。两者在模型产出、能力要求、交互方式和适用场景上存在显著差异。Function Calling更适合高鲁棒性需求,而MCP更适用于快速原型开发和小规模应用。

2025-07-20 23:43:28 1219

原创 Python上下文管理器with

Python中的with语句用于简化资源管理,主要通过上下文管理器实现。上下文管理器包含__enter__和__exit__方法,前者初始化资源并可选返回一个对象(可通过as绑定),后者确保资源正确清理。with语句常用于文件操作(自动关闭文件)、数据库连接、线程锁和目录切换等场景,也可自定义上下文管理器。通过with能确保资源被安全使用和释放,即使发生异常也能正确处理。

2025-06-12 21:53:14 787

原创 线程、进程、程序、并行性和调度程序详解

进程是计算机中正在执行的程序实例。每个进程都有自己的地址空间、数据栈以及其他辅助数据,以确保程序能够独立运行。在操作系统中,进程是资源分配的基本单位。线程是进程中的一个执行单元,线程可以在进程内并行执行任务。多线程的使用可以提高程序的执行效率。线程是进程中的一个执行单元,而进程是程序执行的实例。

2025-04-03 16:33:53 670

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除