并查集实现

1. 并查集原理

在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-find
set)。

比如:某公司今年校招全国总共招生10人,西安招4人,成都招3人,武汉招3人,10个人来自不同的学校,起先互不相识,每个学生都是一个独立的小团体,现给这些学生进行编号:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 给以下数组用来存储该小集体,数组中的数字代表:该小集体中具有成员的个数。(负号下文解释)
在这里插入图片描述
毕业后,学生们要去公司上班,每个地方的学生自发组织成小分队一起上路,于是:西安学生小分队s1={0,6,7,8},成都学生小分队s2={1,4,9},武汉学生小分队s3={2,3,5}就相互认识了,10个人形成了三个小团体。假设右三个群主0,1,2担任队长,负责大家的出行。
在这里插入图片描述
一趟火车之旅后,每个小分队成员就互相熟悉,称为了一个朋友圈。
在这里插入图片描述
从上图可以看出:编号6,7,8同学属于0号小分队,该小分队中有4人(包含队长0);编号为4和9的同学属于1号小分队,该小分队有3人(包含队长1),编号为3和5的同学属于2号小分队,该小分队有3个人(包含队长1)。

仔细观察数组中内融化,可以得出以下结论:
1. 数组的下标对应集合中元素的编号
2. 数组中如果为负数,负号代表根,数字代表该集合中元素个数
3. 数组中如果为非负数,代表该元素双亲在数组中的下标

在公司工作一段时间后,西安小分队中8号同学与成都小分队1号同学奇迹般的走到了一起,两个小圈子的学生相互介绍,最后成为了一个小圈子:
在这里插入图片描述
通过以上例子可知,并查集一般可以解决一下问题:
1. 查找元素属于哪个集合
沿着数组表示树形关系以上一直找到根(即:树中中元素为负数的位置)
2. 查看两个元素是否属于同一个集合
沿着数组表示的树形关系往上一直找到树的根,如果根相同表明在同一个集合,否则不在
3. 将两个集合归并成一个集合
(1)将两个集合中的元素合并
(2)将一个集合名称改成另一个集合的名称
4. 集合的个数
遍历数组,数组中元素为负数的个数即为集合的个数。

2.代码实现

#pragma once
#include<iostream>
#include<vector>

class UnionFindSet
{
public:
	UnionFindSet(int size)
		:_set(size, -1)
	{}

	size_t FindRoot(int x)
	{
		while (_set[x] >= 0)
		{
			x = _set[x];
		}
		return x;
	}
	//合并两棵树
	void Union(int x1,int x2)
	{
		int root1 = FindRoot(x1);
		int root2 = FindRoot(x2);
		//判断 root1与root2 在不在同一颗根节点下 在 就无需合并 
		if (root1 != root2)
		{
			_set[root1] += _set[root2];
			_set[root2] = root1;
		}
	}

	size_t SetCount()
	{
		size_t count = 0;
		for (size_t i = 0; i < _set.size(); ++i)
		{
			if (_set[i] < 0)
				count++;
		}
		return count;
	}

private:
	std::vector<int> _set;
};

3.例题

1.省 份 数 量

class Solution 
{
public:
    int findCircleNum(vector<vector<int>>& isConnected) 
    {
        int m = isConnected.size(),n = isConnected[0].size();
        vector<int>ufs(m,-1);
        auto findRoot = [&ufs](int x){
            while(ufs[x]>=0)
                x = ufs[x];
            return x;
        };

        for(int i = 0;i<m;i++)
        {
            for(int j = 0;j<n;j++)
            {
                if(isConnected[i][j]==1)
                {
                    int root1 = findRoot(i),root2 = findRoot(j);
                    if(root1 != root2)
                    {
                        ufs[root1] += ufs[root2];
                        ufs[root2] = root1;
                    }
                }
            }
        }

        int sum = 0;
        for(auto e:ufs)
        {
            if(e<0) sum++;
        }
        return sum;
    }
};

2 等 式 方 程 的 可 满 足 性

class Solution 
{
public:
    bool equationsPossible(vector<string>& equations) 
    {
        vector<int>ufs(26,-1);
        auto findRoot = [&ufs](int x)
        {
            while(ufs[x]>=0)
                x = ufs[x];
            return x;
        };
        
        for(int i = 0;i<equations.size();i++)
        {
            if(equations[i][1] == '=')
            {
                int root1 = findRoot(equations[i][0]-'a'),root2 = findRoot(equations[i][3]-'a');
                if(root1 != root2)
                {
                    ufs[root1] += ufs[root2];
                    ufs[root2] = root1; 
                }
            }
        }

        for(int i = 0;i<equations.size();i++)
        {
            // 第一遍,先把不相等在不在一个集合,在就相悖了
            // 返回false
            if(equations[i][1]=='!')
            {
                int root1 = findRoot(equations[i][0] - 'a');
                int root2 = findRoot(equations[i][3] - 'a');
                if(root1 == root2)
                {
                    return false;
                }
            }
        }

        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值