1. 并查集原理
在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-find
set)。
比如:某公司今年校招全国总共招生10人,西安招4人,成都招3人,武汉招3人,10个人来自不同的学校,起先互不相识,每个学生都是一个独立的小团体,现给这些学生进行编号:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 给以下数组用来存储该小集体,数组中的数字代表:该小集体中具有成员的个数。(负号下文解释)
毕业后,学生们要去公司上班,每个地方的学生自发组织成小分队一起上路,于是:西安学生小分队s1={0,6,7,8},成都学生小分队s2={1,4,9},武汉学生小分队s3={2,3,5}就相互认识了,10个人形成了三个小团体。假设右三个群主0,1,2担任队长,负责大家的出行。
一趟火车之旅后,每个小分队成员就互相熟悉,称为了一个朋友圈。
从上图可以看出:编号6,7,8同学属于0号小分队,该小分队中有4人(包含队长0);编号为4和9的同学属于1号小分队,该小分队有3人(包含队长1),编号为3和5的同学属于2号小分队,该小分队有3个人(包含队长1)。
仔细观察数组中内融化,可以得出以下结论:
1. 数组的下标对应集合中元素的编号
2. 数组中如果为负数,负号代表根,数字代表该集合中元素个数
3. 数组中如果为非负数,代表该元素双亲在数组中的下标
在公司工作一段时间后,西安小分队中8号同学与成都小分队1号同学奇迹般的走到了一起,两个小圈子的学生相互介绍,最后成为了一个小圈子:
通过以上例子可知,并查集一般可以解决一下问题:
1. 查找元素属于哪个集合
沿着数组表示树形关系以上一直找到根(即:树中中元素为负数的位置)
2. 查看两个元素是否属于同一个集合
沿着数组表示的树形关系往上一直找到树的根,如果根相同表明在同一个集合,否则不在
3. 将两个集合归并成一个集合
(1)将两个集合中的元素合并
(2)将一个集合名称改成另一个集合的名称
4. 集合的个数
遍历数组,数组中元素为负数的个数即为集合的个数。
2.代码实现
#pragma once
#include<iostream>
#include<vector>
class UnionFindSet
{
public:
UnionFindSet(int size)
:_set(size, -1)
{}
size_t FindRoot(int x)
{
while (_set[x] >= 0)
{
x = _set[x];
}
return x;
}
//合并两棵树
void Union(int x1,int x2)
{
int root1 = FindRoot(x1);
int root2 = FindRoot(x2);
//判断 root1与root2 在不在同一颗根节点下 在 就无需合并
if (root1 != root2)
{
_set[root1] += _set[root2];
_set[root2] = root1;
}
}
size_t SetCount()
{
size_t count = 0;
for (size_t i = 0; i < _set.size(); ++i)
{
if (_set[i] < 0)
count++;
}
return count;
}
private:
std::vector<int> _set;
};
3.例题
class Solution
{
public:
int findCircleNum(vector<vector<int>>& isConnected)
{
int m = isConnected.size(),n = isConnected[0].size();
vector<int>ufs(m,-1);
auto findRoot = [&ufs](int x){
while(ufs[x]>=0)
x = ufs[x];
return x;
};
for(int i = 0;i<m;i++)
{
for(int j = 0;j<n;j++)
{
if(isConnected[i][j]==1)
{
int root1 = findRoot(i),root2 = findRoot(j);
if(root1 != root2)
{
ufs[root1] += ufs[root2];
ufs[root2] = root1;
}
}
}
}
int sum = 0;
for(auto e:ufs)
{
if(e<0) sum++;
}
return sum;
}
};
class Solution
{
public:
bool equationsPossible(vector<string>& equations)
{
vector<int>ufs(26,-1);
auto findRoot = [&ufs](int x)
{
while(ufs[x]>=0)
x = ufs[x];
return x;
};
for(int i = 0;i<equations.size();i++)
{
if(equations[i][1] == '=')
{
int root1 = findRoot(equations[i][0]-'a'),root2 = findRoot(equations[i][3]-'a');
if(root1 != root2)
{
ufs[root1] += ufs[root2];
ufs[root2] = root1;
}
}
}
for(int i = 0;i<equations.size();i++)
{
// 第一遍,先把不相等在不在一个集合,在就相悖了
// 返回false
if(equations[i][1]=='!')
{
int root1 = findRoot(equations[i][0] - 'a');
int root2 = findRoot(equations[i][3] - 'a');
if(root1 == root2)
{
return false;
}
}
}
return true;
}
};