第一关:基于栈的中缀算术表达式求值
本关任务:输入一个中缀算术表达式,求解表达式的值。运算符包括+、-、*、/、(、)、=,参加运算的数为double类型且为正数。(要求:直接针对中缀算术表达式进行计算,不能转换为后缀或前缀表达式再进行计算,只考虑二元运算即可。)
输入:多组数据,每组数据一行,对应一个算术表达式,每个表达式均以“=”结尾。当表达式只有一个“=”时,输入结束。参加运算的数为double类型。
输出:对于每组数据输出一行,为表达式的运算结果。输出保留两位小数。
测试输入:
2+2=
20*(4.5-3)=
=
预期输出:
4.00
30.00
#include <iostream>
#include<iomanip>
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef struct
{//运算符栈
char* base;
char* top;
int stacksize;
}SqStack1;
int InitStack1(SqStack1& S)
{//运算符栈初始化
S.base = new char[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push1(SqStack1& S, char e)
{//运算符栈入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
int Pop1(SqStack1& S)
{//运算符栈出栈
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return OK;
}
char GetTop1(SqStack1 S)
{//运算符栈取栈顶元素
if (S.top != S.base)
return *(S.top - 1);
return ERROR;
}
typedef struct
{//操作数栈
double* base;
double* top;
int stacksize;
}SqStack2;
int InitStack2(SqStack2& S)
{//操作数栈初始化
S.base = new double[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push2(SqStack2& S, double e)
{//操作数栈入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
int Pop2(SqStack2& S)
{//操作数栈出栈
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return OK;
}
double GetTop2(SqStack2 S)
{//操作数栈取栈顶元素
if (S.top != S.base)
return *(S.top - 1);
return ERROR;
}
double Calculate(double a, char op, double b)
{//计算表达式“a op b”的值
switch (op)
{
case '+':return a + b;
case '-':return a - b;
case '*':return a * b;
case '/':return a / b;
}
}
char Precede(char a, char b)
{//比较运算符a和b的优先级
if ((a == '(' && b == ')') || (a == '=' && b == '='))
return '=';
else if (a == '(' || a == '=' || b == '(' || (a == '+' || a == '-') && (b == '*' || b == '/'))
return '<';
else
return '>';
}
double EvaluateExpression(SqStack1 OPTR, SqStack2 OPND, char s[])
{//算术表达式求值的算符优先算法
/**************begin************/
//设OPTR和OPND分别为运算符栈和操作数栈
//表达式求值算法调用Precede函数和Calculate函数
Push1(OPTR, '='); //把 = 作栈底
char temp;
double a = 0, b = 0;
int i = 0;
while (s[i] != '=' || GetTop1(OPTR) != '=' && i < MAXSIZE) {
//操作数
if (s[i] >= '0' && s[i] <= '9') {
double result_int = 0; //用于临时存储操作数
// 整数部分
while (s[i] != '.' && s[i] >= '0' && s[i] <= '9') {
result_int = result_int * 10 + (s[i] - 48);
i++;
}
// 小数部分
double result_frac = 0;
double Multiplier = 1.0 / 10; //小数位的权数
if (s[i] == '.') i++;
while (s[i] >= '0' && s[i] <= '9') {
result_frac += Multiplier * (s[i] - 48);
Multiplier *= 1.0 / 10;
i++;
}
double sum = 0;
sum = result_int + result_frac;
Push2(OPND, sum);
}
//运算符
else
{
switch (Precede(GetTop1(OPTR), s[i])) {
case '<':
Push1(OPTR, s[i]);
i++;
break;
case '>':
//出栈
temp = GetTop1(OPTR);
Pop1(OPTR);
a = GetTop2(OPND);
Pop2(OPND);
b = GetTop2(OPND);
Pop2(OPND);
//把运算结果入栈
Push2(OPND, Calculate(b, temp, a));
break;
case '=':
Pop1(OPTR);
i++;
break;
}
}
}
return GetTop2(OPND);
/**************end************/
}
int main()
{//设OPTR和OPND分别为运算符栈和操作数栈
SqStack1 OPTR;
InitStack1(OPTR); //初始化OPND栈
SqStack2 OPND;
InitStack2(OPND); //初始化OPTR栈
Push1(OPTR, '='); //将表达式起始符“=”压入OPTR栈
char s[100];
while (cin >> s)
{//循环读入多组数据
if (s[0] == '=')
break; //当表达式只有一个“=”时,输入结束
//输出中缀算术表达式的值
cout << fixed << setprecision(2) << EvaluateExpression(OPTR, OPND, s) << fixed << setprecision(2) << endl;
}
return 0;
}
建议先完成第五关和第十二关,再来完成本关任务。
第二关:双栈的基本操作
本关任务:将编号为0和1的两个栈存放于一个数组空间V[m]中,栈底分别处于数组的两端。当第0号栈的栈顶指针top[0]等于-1时该栈为空;当第1号栈的栈顶指针top[1]等于m时,该栈为空。两个栈均从两端向中间增长(见下图)。试编写双栈初始化,判断栈空、栈满、进栈和出栈算法的函数。函数调用次序依次为:进栈、栈满的判断、出栈、栈空的判断。
输入:多组数据,每组数据有四行,每行的数据之间均用空格分隔。第一行为一个整数m,表示数组V的大小,第二行为四个整数e0、e1、d0、d1,e0和e1分别代表压入0号栈和1号栈的整数序列E0和E1的长度(依次连续入栈,中间没有出栈的情况),d0和d1分别代表从0号栈和1号栈弹出的序列的长度(依次连续出栈,中间没有入栈的情况)。第三行和第四行分别表示序列E0和E1。当m=0时,输入结束。
输出:对于每组数据输出三行。第一行代表进栈操作完成时栈是否为满(出栈操作尚未执行),栈满输出1,栈不满输出0。第二行和第三行的数据分别对应0号栈和1号栈。第二行包括d0+1个整数,其中前d0个整数代表出栈序列D0,最后一个整数代表出栈操作完成时0号栈是否为空,栈空输出0,不空输出1。第三行包括d1+1个整数,其中前d1个整数代表出栈序列D1,最后一个整数代表出栈操作完成时1号栈是否为空,栈空输出0,不空输出1。整数之间用空格分隔。
测试输入:
7
3 4 2 2
1 2 3
2 3 4 5
12
4 6 4 3
1 3 4 5
1 3 5 6 8 1
0
预期输出:
1
3 2 1
5 4 1
0
5 4 3 1 0
1 8 6 1
#include<iostream>
using namespace std;
typedef struct
{
int top[2], bot[2];//栈顶和栈底指针
int* V;//栈数组
int m;//栈最大可容纳元素个数
}DblStack;
void InitDblStack(DblStack& S, int m)
{//初始化一个大小为m的双向栈
S.V = new int[m]; //动态分配一个最大容量为m的数组空间
S.bot[0] = -1; //左栈栈底指针
S.bot[1] = m; //右栈栈底指针
S.top[0] = -1; //左栈栈顶指针
S.top[1] = m; //右栈栈顶指针
}
int IsEmpty(DblStack S, int i)
{//判断指定的i号栈是否为空,空返回1,否则返回0
return S.top[i] == S.bot[i];
}
int IsFull(DblStack S)
{//判断栈是否满,满则返回1,否则返回0
if (S.top[0] + 1 == S.top[1]) return 1;
else return 0;
}
void Push(DblStack& S, int i)
{//向指定的i号栈中插入元素x,先移动指针再入栈
/**************begin************/
if (IsFull(S)) return; //栈满退出
if (i == 0) //左栈
{
S.top[0]++;
cin >> S.V[S.top[0]];
}
else //右栈
{
S.top[1]--;
cin >> S.V[S.top[1]];
}
/**************end************/
}
void Pop(DblStack& S, int i)
{//删除指定的i号栈的栈顶元素,先出栈再移动指针
/**************begin************/
if (IsEmpty(S, i)) return; //栈空退出
if (i == 0) // 左栈
{
cout << S.V[S.top[0]] << " "; // 输出栈顶元素
S.top[0]--;
}
else // 右栈
{
cout << S.V[S.top[1]] << " "; // 输出栈顶元素
S.top[1]++;
}
/**************end************/
}
int main()
{
DblStack S;
int m, e0, e1, d0, d1;
while (cin >> m)
{
if (m == 0) break;
InitDblStack(S, m);
cin >> e0 >> e1 >> d0 >> d1;
while (e0--)
Push(S, 0);
while (e1--)
Push(S, 1);
cout << IsFull(S) << endl;
while (d0--)
Pop(S, 0);
cout << !IsEmpty(S, 0) << endl;
while (d1--)
Pop(S, 1);
cout << !IsEmpty(S, 1) << endl;
}
return 0;
}
第三关:基于栈的回文字符序列判断
本关任务:回文序列是正反读均相同的字符序列,如“abba”和“abdba”均是回文,但是“good”不是回文。请设计一个算法判定给定的字符序列是否为回文。
输入:多组数据,每组数据有一行。每一行为一个长度不定的字符序列A。当A为“0”时,输入结束。
输出:对于每组数据输出一行。若字符序列A是回文序列,则输出“YES”,否则输出“NO”。
测试输入:
abba
abdba
good
0
预期输出:
YES
YES
NO
#include <iostream>
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef struct
{
char* base;
char* top;
int stacksize;
}SqStack;
int InitStack(SqStack& S)
{//栈初始化
S.base = new char[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push(SqStack& S, char e)
{//入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
int Pop(SqStack& S)
{//出栈返回栈顶元素
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return *S.top;
}
int IsPalindrome(SqStack& S, char* t)
{//判断栈的回文字符序列
/**************begin************/
while (*t) //入栈
{
Push(S, *t);
t++;
}
S.top--;
while (S.top - S.base > 1)
{
if (*S.base != *S.top) return 0;
else
{
S.base++;
S.top--;
}
}
return 1;
/**************end************/
}
int main()
{
char t[100];
while (cin >> t && t[0] != '0')
{
SqStack S;
InitStack(S);
if (IsPalindrome(S, t) == 1) cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
第四关:入栈和出栈的基本操作
本关任务:输入一个整数序列a1,a2,a3…,an。当ai不等于-1时将ai进栈;当ai=-1时,输出栈顶元素并将其出栈。
输入:多组数据,每组数据有两行,第一行为序列的长度n,第二行为n个整数,整数之间用空格分隔。当n=0时输入结束。
输出:对于每一组数据输出若干行。每行为相应的出栈元素。当出栈异常时,输出“POP ERROR”并结束本组数据的输出。
测试输入:
5
1 2 -1 -1 1
5
1 -1 -1 2 2
0
预期输出:
2
1
1
POP ERROR
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef struct
{//栈的定义
int* base;
int* top;
int stacksize;
}SqStack;
int InitSqStack(SqStack& S)
{//栈的初始化
S.base = new int[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push(SqStack& S, int e)
{//入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
int Pop(SqStack& S)
{//出栈
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return OK;
}
int GetTop(SqStack S)
{//取栈顶元素
if (S.top == S.base) //栈空
return ERROR;
return *(S.top - 1);
}
void InOutS(SqStack& S, int a[], int n)
{//入栈和出栈的基本操作
/**************begin************/
for (int i = 0; i < n; i++) //循环遍历数组中所有元素
{
if (a[i] != -1) //入栈
{
Push(S, a[i]);
}
else //出栈
{
if (S.top == S.base) //判断是否为空
{
cout << "POP ERROR" << endl;
break;
}
else //非空则出栈
{
cout << GetTop(S) << endl;
Pop(S);
}
}
}
/**************end************/
}
int main()
{
int n;
while (cin >> n)
{
if (n == 0) break;
SqStack S;
InitSqStack(S);
int a[MAXSIZE];
for (int i = 0; i < n; i++) cin >> a[i]; //整数序列
InOutS(S, a, n);
}
return 0;
}
第五关:基于栈的后缀算术表达式求值
本关任务:从键盘上输入一个后缀表达式,试编写算法计算表达式的值。规定:后缀表达式的长度不超过一行,以“=”作为输入结束,操作数之间用空格分隔,操作符只可能有+、?、*、/四种运算。
输入:多组数据,每组数据一行,对应一个后缀算术表达式,每个表达式均以“=”结尾。当表达式只有一个“=”时,输入结束。
输出:对于每组数据输出一行,为表达式的运算结果。
测试输入:
1 2+8 2-7 4-/*=
1 2+=
1 2/=
=
预期输出:
6.00
3.00
0.50
#include <iostream>
#include<iomanip>
#include <string>
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef struct
{//数字栈
double* base;
double* top;
int stacksize;
}SqStack;
int InitStack(SqStack& S)
{//数字栈初始化
S.base = new double[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push(SqStack& S, double e)
{//数字栈入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
int Pop(SqStack& S)
{//数字栈出栈
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return OK;
}
double GetTop(SqStack S)
{//数字栈取栈顶元素
if (S.top != S.base)
return *(S.top - 1);
return ERROR;
}
double Calculate(double a, char op, double b)
{//算术表达式的求值
switch (op)
{
case '+':return a + b;
case '-':return a - b;
case '*':return a * b;
case '/':return a / b;
}
}
double EvaluateExpression(SqStack OPND, char s[])
{//后缀算术表达式求值
/**************begin************/
double a, b;
int i = 0;
while (s[i] != '=') {
if (s[i] == ' ') { //忽略空格
i++;
}
else if (s[i] >= '0' && s[i] <= '9') { //数字入栈
double num = s[i] - 48;
Push(OPND, num);
i++;
}
else { //运算符,数字出栈运算
b = GetTop(OPND);
Pop(OPND);
a = GetTop(OPND);
Pop(OPND);
Push(OPND, Calculate(a, s[i], b)); // a + b ...
i++;
}
}
return GetTop(OPND);
/**************end************/
}
int main()
{
char s[100];
//用字符数组存储表达式,每个数组元素仅存一个字符
while (1)
{
cin.getline(s, 100); //输入一行含空格的后缀表达式
if (s[0] == '=')
break; //当表达式只有一个"="时,输入结束
SqStack OPND;
InitStack(OPND); //初始化数字栈
cout << fixed << setprecision(2) << EvaluateExpression(OPND, s) << fixed << setprecision(2) << endl;
}
return 0;
}
第六关:基于栈的可操作判断
本关任务:假设I和O分别代表入栈和出栈操作。栈的始态和终态均为空。入栈和出栈的操作序列可以表示为仅由I和O组成的序列,称可操作的序列为合法序列,否则称为非法序列。请设计一个算法,判断所给的操作序列是否合法。若合法输出“TRUE”,反之输出“FALSE”。
输入:多组数据,每组数据为一行,长度不定的操作序列A。当A为“0”时,输入结束。
输出:每组数据输出一行,可操作为TRUE,不可操作为FALSE。
测试输入:
IOIOIO
IIOOOO
0
预期输出:
TRUE
FALSE
#include <iostream>
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef struct
{
char* base;
char* top;
int stacksize;
}SqStack;
int InitStack(SqStack& S)
{//初始化栈
S.base = new char[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
int Push(SqStack& S)
{//入栈
S.top++;
return OK;
}
int Pop(SqStack& S)
{//出栈
S.top--;
return OK;
}
int IsEmpty(SqStack S)
{//判断栈是否为空,空返回1,否则返回0
return S.top == S.base;
}
bool Judge(char a[], SqStack& S)
{//栈的可操作判断
/**************begin************/
int i = 0;
while (a[i])
{
if (a[i] == 'I') Push(S); //遇I入栈
else //出栈
{
if (IsEmpty(S)) return false; //空栈报错并退出
else Pop(S);
}
i++;
}
//栈非空则有冗余项,返回false
if (!IsEmpty(S))
return false;
return true;
/**************end************/
}
int main()
{
char a[100];
while (cin >> a)
{
if (a[0] == '0') break;
SqStack op;
InitStack(op);
if (Judge(a, op)) cout << "TRUE" << endl;
else cout << "FALSE" << endl;
}
return 0;
}
第七关:Ackermann函数的递归求值
本关任务:已知Ackermann函数定义如下:
写出计算Ack(m,n)的递归算法。
输入:多组数据,每组数据有一行,为两个整数m和n。当m和n都等于0时,输入结束。
输出:每组数据输出一行,为Ack(m,n)。
测试输入:
3 5
3 10
0 0
预期输出:
253
8189
#include<iostream>
using namespace std;
int Ack(int m,int n)
{//Ackermann函数的递归求值
/**************begin************/
if(m == 0) return ++n;
if(m > 0 && n == 0) return Ack(m-1,1);
return Ack(m-1,Ack(m,n-1));
/**************end************/
}
int main()
{
int m,n;
while(cin>>m>>n)
{
if(m==0&&n==0) break;
cout<<Ack(m,n)<<endl;
}
return 0;
}
第八关:Ackermann函数的非递归求值
本关任务:已知Ackermann函数定义如下:
写出计算Ack(m,n)的非递归算法。
输入:多组数据,每组数据有一行,为两个整数m和n。当m和n都等于0时,输入结束。
输出:每组数据输出一行,为Ack(m,n)。
测试输入:
2 1
0 0
预期输出:
5
#include<iostream>
using namespace std;
#define MAXSIZE 100
int Ack(int m, int n)
{//Ackermann函数的非递归求值
/**************begin************/
int akm[m + 1][100];
for (int j = 0; j < 100; j++)
akm[0][j] = j + 1;
for (int i = 1; i <= m; i++)
{
akm[i][0] = akm[i - 1][1];
for (int j = 1; j < 100; j++)
akm[i][j] = akm[i - 1][akm[i][j - 1]];
}
return (akm[m][n]);
/**************end************/
}
int main()
{
int m, n;
while (cin >> m >> n)
{
if (m == 0 && n == 0) break;
cout << Ack(m, n) << endl;
}
return 0;
}
第九关:递归求解单链表中的最大值
本关任务:利用单链表表示一个整数序列,利用递归的方法求出单链表中整数的最大值。
输入:多组数据,每组数据有两行,第一行为链表的长度n,第二行为链表的n个元素(元素之间用空格分隔)。当n=0时输入结束。
输出:对于每组数据分别输出一行,输出每个链表的最大值。
测试说明:平台会对你编写的代码进行测试:
测试输入:
4
1 2 3 4
5
-1 2 39 2 3
0
预期输出:
4
39
#include <iostream>
using namespace std;
typedef struct LNode
{
int data;
struct LNode* next;
}LNode, * LinkList;
void CreateList_R(LinkList& L, int n)
{//后插法创建单链表
L = new LNode;
L->next = NULL;
LinkList r = L;
for (int i = 0; i < n; i++)
{
LinkList p = new LNode;
cin >> p->data;
p->next = NULL;
r->next = p;
r = p;
}
}
int GetMax(LinkList L)
{//递归求解单链表中的最大值
/**************begin************/
int max;
if (L->next == NULL)
return L->data;
else
{
max = GetMax(L->next);
return L->data >= max ? L->data : max;
}
/**************end************/
}
int main()
{
int n;
while (cin >> n)
{
if (n == 0) break;
LinkList L;
CreateList_R(L, n);
L = L->next; //指向首元结点
cout << GetMax(L) << endl;
}
return 0;
}
在GetMax函数中,首先递归让max等于列表中最后一项,然后返回上一层,运行 return L->data >= max ? L->data : max; 代码,将L目前所指的值与max(L的next的值)相比较,将最大的那一项赋给上一层的max,再次运行 return L->data >= max ? L->data : max; 代码,将L目前所指的值与max(上一次比较中最大的那一项)相比较,将最大的那一个赋给上一层的max,依此逻辑,递归找出列表中最大的那一项。
第十关:递归求解单链表中的结点个数
本关任务:利用单链表表示一个整数序列,利用递归的方法计算单链表中结点的个数。
输入:多组数据,每组数据有两行,第一行为链表的长度n,第二行为链表的n个元素(元素之间用空格分隔)。当n=0时输入结束。
输出:对于每组数据分别输出一行,对应链表中的各个结点个数。
测试输入:
4
1 2 3 4
6
1 2 43 5 7 2
0
预期输出:
4
6
#include <iostream>
using namespace std;
typedef struct LNode
{
int data;
struct LNode* next;
}LNode, * LinkList;
void CreateList_R(LinkList& L, int n)
{//后插法创建单链表
L = new LNode;
L->next = NULL;
LinkList r = L;
for (int i = 0; i < n; i++)
{
LinkList p = new LNode;
cin >> p->data;
p->next = NULL;
r->next = p;
r = p;
}
}
int GetLength(LinkList L)
{//递归求解单链表中的结点个数
/**************begin************/
if (L->next == NULL) return 1;
return 1 + GetLength(L->next);
/**************end************/
}
int main()
{
int n;
while (cin >> n)
{
if (n == 0) break;
LinkList L;
CreateList_R(L, n);
L = L->next; //L指向首元结点
cout << GetLength(L) << endl;
}
return 0;
}
第十一关:递归求解单链表中的平均值**
本关任务:利用单链表表示一个整数序列,利用递归的方法计算单链表中各个结点的平均值。
输入:多组数据,每组数据有两行,第一行为链表的长度n,第二行为链表的n个元素(元素之间用空格分隔)。当n=0时输入结束。
输出:对于每组数据分别输出一行,对应链表中的各个结点的平均值,输出保留两位小数。
测试输入:
4
1 2 3 4
6
1 1 1 1 1 1
0
预期输出:
2.50
1.00
#include <iostream>
using namespace std;
typedef struct LNode
{
int data;
struct LNode* next;
}LNode, * LinkList;
void CreateList_R(LinkList& L, int n)
{//后插法创建单链表
L = new LNode;
L->next = NULL;
LinkList r = L;
for (int i = 0; i < n; i++)
{
LinkList p = new LNode;
cin >> p->data;
p->next = NULL;
r->next = p;
r = p;
}
}
double GetAverage(LinkList L, int n)
{//递归求解单链表中的平均值
/**************begin************/
if (L->next == NULL)
return L->data;
else
{
double ave = GetAverage(L->next, n - 1);
return (ave * (n - 1) + L->data) / n;
}
/**************end************/
}
int main()
{
int n;
while (cin >> n)
{
if (n == 0) break;
LinkList L;
CreateList_R(L, n);
L = L->next;//L指向首元结点
printf("%.2f\n", GetAverage(L, n));//输出保留两位小数
}
return 0;
}
递归思路同第九关
让 ave 最后一项、最后两项、最后三项 … 的平均值
代码 return (ave * (n - 1) + L->data) / n; 中 ave * (n - 1) 的含义为目前 L 所指后面所有项的和
代码 ave * (n - 1) + L->data 的含义为L 及 其后所有项的和, / n用来计算其平均值,并返回
依次类推,最后返回的值为所有项的平均值
第十二关:中缀表达式转化为后缀表达式
本关任务:输入一个中缀算术表达式,将其转换为后缀表达式。运算符包括+、-、*、/、(、)、=,参加运算的为小于10的自然数。(只考虑二元运算即可)
输入:多组数据,每组数据一行,对应一个算术表达式,每个表达式均以“=”结尾。当表达式只有一个“=”时,输入结束。
输出:对于每组数据输出一行,为表达式的后缀式。
测试输入:
9+(3-1)*3+1/2=
1+2=
=
预期输出:
931-3*+12/+
12+
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define Status int
typedef struct
{
char* base;
char* top;
int stacksize;
}SqStack;
Status InitStack(SqStack& S)
{//初始化栈
S.base = new char[MAXSIZE];
if (!S.base) return OVERFLOW;
S.top = S.base;
S.stacksize = MAXSIZE;
return OK;
}
Status Push(SqStack& S, char e)
{//入栈
if (S.top - S.base == S.stacksize) //栈满
return ERROR;
*S.top = e;
S.top++;
return OK;
}
Status Pop(SqStack& S)
{//出栈
if (S.top == S.base) //栈空
return ERROR;
S.top--;
return OK;
}
char GetTop(SqStack S)
{//取栈顶元素
if (S.top != S.base)
return *(S.top - 1);
return ERROR;
}
char Precede(char a, char b)
{//比较符号优先级
if ((a == '(' && b == ')') || (a == '=' && b == '='))
return '=';
else if (a == '=' || a == '(' || b == '(' || ((a == '+' || a == '-') && (b == '*' || b == '/')))
return '<';
else
return '>';
}
void InfixToSuffix(SqStack op, char s[])
{//将中缀表达式转化为后缀表达式并输出
/**************begin************/
int i = 0;
while ((s[i] != '=' || GetTop(op) != '=') && s[i] != '\0') { //循环截止条件
//遇到操作数,直接加入后缀表达式(即输出)
if (s[i] >= '0' && s[i] <= '9') {
cout << s[i];
i++;
continue;
}
//遇到界限符 ( ,直接入栈
else if (s[i] == '(')
{
Push(op, s[i]);
i++;
continue;
}
//遇到界限符 ) ,依次出栈,直到弹出 (
else if (s[i] == ')')
{
while (*(op.top - 1) != '(')
{
cout << GetTop(op);
Pop(op);
}
Pop(op);
i++;
continue;
}
//遇到运算符,依次弹出栈中运算优先级大于等于自己的运算符
//遇到 ( 或者 栈空 停止,之后把自己入栈
else if (s[i] == '+' || s[i] == '-' || s[i] == '*' || s[i] == '/')
{
if (s[i] == '+' || s[i] == '-')
{
while (op.top - op.base != 1 && *(op.top - 1) != '(')
{
cout << GetTop(op);
Pop(op);
}
}
else
{
while (op.top - op.base != 1 && *(op.top - 1) != '(' && *(op.top - 1) != '+' && *(op.top - 1) != '-')
{
cout << GetTop(op);
Pop(op);
}
}
Push(op, s[i]);
i++;
continue;
}
while (op.top - op.base != 1)
{
cout << GetTop(op);
Pop(op);
}
}
cout << endl;
/**************end************/
}
int main()
{
SqStack op;
InitStack(op); //初始化字符栈op
Push(op, '='); //先在栈底放入'='便于以后比较符号优先级
char s[100];
while (cin >> s)
{
if (s[0] == '=')
break; //当表达式只有一个“=”时,输入结束
else
InfixToSuffix(op, s); //将中缀表达式转化为后缀表达式并输出
}
return 0;
}
按注释所给提示,依次进行操作即可,解题思路相对固定
第十三关:基于循环链表的队列的基本操作
本关任务:用带头结点的循环链表表示队列,并且只设一个指针指向队尾元素结点(不设头指针)。实现该队列的入队出队以及判断队列是否为空操作。
输入:多组数据,每组数据有两行。第一行为两个整数n和m,n表示入队序列A的长度(n个数依次连续入队,中间没有出队的情况),m表示出队序列B的元素数量(m个数依次连续出队,中间没有入队的情况)。第二行为序列A(空格分隔的n个整数)。当n和m都等于0时,输入结束。
输出:对应每组数据输出一行。每行包括m+1个整数,前m个数代表出队序列B的各个整数,最后一个整数表示队列是否为空,队列为空输出0,不为空输出1。整数之间用空格分隔。
测试输入:
5 3
1 3 5 3 6
4 4
-1 2 3 4
0 0
预期输出:
1 3 5 1
-1 2 3 4 0
#include<iostream>
using namespace std;
typedef struct QNode
{//队列的链式存储结构
int data;
struct QNode* next;
}QNode, * QueuePtr;
typedef struct
{
QueuePtr rear; //只设一个队尾指针
}LinkQueue;
int EmptyQueue(LinkQueue Q)
{//判断队列是否为空,空返回1,否则返回0
//队列只有一个头结点,即当头结点的指针域指向自己时,队列为空
/**************begin************/
if (Q.rear->next == Q.rear) return 1;
return 0;
/**************end************/
}
void EnQueue(LinkQueue& Q, int e)
{//入队,插入元素e为Q的新的队尾元素
/**************begin************/
QueuePtr queuePtr = new QNode();
queuePtr->data = e;
queuePtr->next = Q.rear->next;
Q.rear->next = queuePtr;
Q.rear = Q.rear->next;
/**************end************/
}
void DeQueue(LinkQueue& Q)
{//出队,输出Q的队头元素值,后将其删除
/**************begin************/
QueuePtr q = Q.rear->next->next;
cout << q->data << ' ';
Q.rear->next->next = q->next;
if (q == Q.rear) {
Q.rear = Q.rear->next;
}
/**************end************/
}
int main()
{
int n, m;
while (cin >> n >> m)
{
if (n == 0 && m == 0) break;
LinkQueue Q; //初始化一个带头结点的循环链表
Q.rear = new QNode;
Q.rear->next = Q.rear;
while (n--)
{
int e; cin >> e;
EnQueue(Q, e);
}
while (m--)
DeQueue(Q);
if (EmptyQueue(Q))
cout << "0" << endl;
else
cout << "1" << endl;
}
return 0;
}
第十四关:附加判定标志的循环队列的基本操作
本关任务:假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag== 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
输入:多组数据,每组数据有两行。第一行为一个整数n,n表示入队序列A的长度(n个数依次连续入队,中间没有出队的情况),第二行为序列A(空格分隔的n个整数)。当n=0时,输入结束。
输出:对应每组数据输出一行。依次输出队列中所有的整数,每两个整数之间用空格分隔。
测试输入:
4
1 2 3 4
5
1 2 4 5 3
0
预期输出:
1 2 3 4
1 2 4 5 3
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 0
#define OVERFLOW -1
#define ERROR -2
typedef struct
{
int* base;
int front, rear, tag;
}SqQueue;
int InitQueue(SqQueue& Q)
{//构造一个空队列Q
Q.base = new int[MAXSIZE];//为队列分配一个最大容量MAXSIZE的数组空间
if (!Q.base) return OVERFLOW;//存储分配失败
Q.front = Q.rear = 0;//头尾指针置零,队列为空
Q.tag = 0;//标志初始化为0,队列为空
return OK;
}
int EnQueue(SqQueue& Q, int e)
{//插入元素e为Q的新的队尾元素
/**************begin************/
if ((Q.rear + 1) % MAXSIZE == Q.front) return ERROR; //判断队列是否满
Q.base[Q.rear] = e;
Q.rear = (Q.rear + 1) % MAXSIZE;
return OK;
/**************end************/
}
int DeQueue(SqQueue& Q)
{//删除Q的队头元素,用e返回其值
/**************begin************/
if (Q.front == Q.rear) return ERROR; //判断队列是否空
int e = Q.base[Q.front];
Q.front = (Q.front + 1) % MAXSIZE;
return e;
/**************end************/
}
int main()
{
int n;
while (cin >> n)
{
if (n == 0) break;
SqQueue Q;
InitQueue(Q);
for (int i = 0; i < n; i++)
{
int x; cin >> x;
EnQueue(Q, x);
}
for (int i = 0; i < n - 1; i++)
cout << DeQueue(Q) << " ";
cout << DeQueue(Q) << endl;
}
return 0;
}
第十五关:基于两端操作的循环队列的实现
本关任务:如果允许在循环队列的两端都可以进行插入和删除操作。构造一个循环队列,实现从队头入队,从队尾出队并输出。约定从队头入队时向下标小的方向发展,从队尾入队时则向下标大的方向发展。
输入:多组数据,每组数据有两行。第一行为一个整数n,n表示入队序列A的长度(n个数依次连续入队,中间没有出队的情况),第二行为序列A(空格分隔的n个整数)。当n等于0时,输入结束。
输出:
对应每组数据输出一行。依次输出队列中所有的整数,每两个整数之间用空格分隔。
测试输入:
5
1 2 3 4 5
2
1 4
0
预期输出:
1 2 3 4 5
1 4
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef struct
{
int* base;
int front;
int rear;
}SqQueue;
int InitQueue(SqQueue& Q)
{//构造一个空队列Q
Q.base = new int[MAXSIZE]; //为队列分配一个最大容量为MAXSIZE的数组空间
if (!Q.base) return OVERFLOW; //存储分配失败
Q.front = Q.rear = 0; //头尾指针置零,队列为空
return OK;
}
int EnQueue(SqQueue& Q, int e)
{//在Q的队头插入新元素e
/**************begin************/
if ((Q.rear + 1) % MAXSIZE == Q.front) return ERROR;
Q.base[Q.rear] = e;
Q.rear = (Q.rear + 1) % MAXSIZE;
return OK;
/**************end************/
}
int DeQueue(SqQueue& Q)
{//删除Q的队尾元素,用e返回其值
/**************begin************/
if (Q.front == Q.rear) return ERROR;
int e = Q.base[Q.front];
Q.front = (Q.front + 1) % MAXSIZE;
return e;
/**************end************/
}
int main()
{
int n;
while (cin >> n && n != 0)
{
SqQueue Q;
InitQueue(Q);
for (int i = 0; i < n; i++)
{
int x; cin >> x;
EnQueue(Q, x);
}
for (int i = 0; i < n - 1; i++)
cout << DeQueue(Q) << " ";
cout << DeQueue(Q) << endl;
}
return 0;
}