目录
单链表
思路:
工程链表:
typedef struct SListNode
{
int data; // val
struct SListNode* next; // 存储下一个节点的地址
}SLN;
算法表示法:
head 表示头结点的下标,数组e[]表示链表 date值,ne[]表示存储下一个节点的地址的指针next,idx 存储当前已经用到了哪个点
#include <iostream>
using namespace std;
const int N = 100010;
// head 表示头结点的指针
// e[i] 表示节点i的值
// ne[i] 表示节点i的next指针是多少
// idx 存储当前已经用到了哪个点,工程链表中的新地址
int head, e[N], ne[N], idx;
// 初始化
void init()
{
head = -1; //-1表示指向空
idx = 0; //下标索引从0开始
}
// 将x插到头结点
void add_to_head(int x)
{
e[idx] = x, ne[idx] = head, head = idx ++ ;
}
// 将x插到下标是k的点后面
void add(int k, int x)
{
e[idx] = x, ne[idx] = ne[k], ne[k] = idx ++ ;
}
// 将下标是k的点后面的点删掉
void remove(int k)
{
ne[k] = ne[ne[k]]; //让结点直接指向下一个结点的next,不用管内存泄漏
}
int main()
{
int m;
cin >> m;
init();
while (m -- )
{
int k, x;
char op;
cin >> op;
if (op == 'H')
{
cin >> x;
add_to_head(x);
}
else if (op == 'D')
{
cin >> k;
if (!k) head = ne[head]; //如果k为0,删除头结点,ne[head]表示头结点的下一节点
else remove(k - 1); //k-1对应从0开始的idx
}
else
{
cin >> k >> x;
add(k - 1, x);
}
}
for (int i = head; i != -1; i = ne[i]) cout << e[i] << ' ';
cout << endl;
return 0;
}
双链表
思路:
与单链表类似,e[N]存值,l[N]、r[N]表示左右指针
双链表初始化:
0号店表示头结点,1号表示尾节点
r[0] = 1, l[1] = 0; idx = 2;
删除节点a的remove()函数
void remove(int a) { l[r[a]] = l[a]; r[l[a]] = r[a]; } //先内层再到外层
在节点k的右边插入一个数x方法
第一步:开一个新节点,左右指针指向k,与k的下一个节点
第二步:先让k的下一个节点的左指针指向新点,再用k的右指针指向新点;顺序搞错会导致数据覆盖
void insert(int a, int x) { e[idx] = x; l[idx] = a, r[idx] = r[a]; l[r[a]] = idx, r[a] = idx ++ ; }
#include <iostream>
using namespace std;
const int N = 100010;
int m;
int e[N], l[N], r[N], idx;
// 在节点a的右边插入一个数x
void insert(int a, int x)
{
e[idx] = x;
l[idx] = a, r[idx] = r[a];
l[r[a]] = idx, r[a] = idx ++ ;
}
// 删除节点a
void remove(int a)
{
l[r[a]] = l[a];
r[l[a]] = r[a];
}
int main()
{
cin >> m;
// 0是左端点,1是右端点
r[0] = 1, l[1] = 0;
idx = 2;
while (m -- )
{
string op;
cin >> op;
int k, x;
if (op == "L")
{
cin >> x;
insert(0, x);
}
else if (op == "R")
{
cin >> x;
insert(l[1], x);
}
else if (op == "D")
{
cin >> k;
remove(k + 1); //idx从2开始,插入节点夹在head与tail之间
}
else if (op == "IL")
{
cin >> k >> x;
insert(l[k + 1], x);
}
else
{
cin >> k >> x;
insert(k + 1, x);
}
}
for (int i = r[0]; i != 1; i = r[i]) cout << e[i] << ' ';
cout << endl;
return 0;
}
模拟栈
#include <iostream>
using namespace std;
const int N = 100010;
int st[N];
int top,n;
int main()
{
cin>>n;
while(n--)
{
string s;
cin>>s;
if(s=="push")
{
int a;
cin>>a;
st[++top]=a;
}
else if(s=="pop")
{
--top;
}
else if(s=="query")
{
cout<<st[top]<<endl;
}
else if(s=="empty")
{
cout<<(top==0?"YES":"NO")<<endl;
}
}
return 0;
}
表达式求值模板
#include<iostream>
#include<stack>
#include<unordered_map>
using namespace std;
stack<int> num;
stack<char> op;
unordered_map<char,int> h{{'+',1},{'-',1},{'*',2},{'/',2}};//数值表示优先级
void eval()
{
int a=num.top();
num.pop();
int b=num.top();
num.pop();
char p=op.top();
op.pop();
int r=0;
if(p=='+') r=b+a;
if(p=='-') r=b-a;
if(p=='*') r=b*a;
if(p=='/') r=b/a;
num.push(r);
}
int main()
{
string s;
cin>>s;
for(int i=0;i<s.size();i++)
{
if(isdigit(s[i]))//如果是数字则转化入栈
{
int x=0,j=i;
while(j<s.size()&&isdigit(s[j]))
{
x=x*10+s[j]-'0';
j++;
}
num.push(x);
i=j-1;
}
else if(s[i]=='(')
{
op.push(s[i]);
}
else if(s[i]==')')//遇到右括号直接操作括号里的
{
while(op.top()!='(') eval();
op.pop();
}
else
{
//前一个符号优先级不小于当前符号,说明可以计算后再加入当前符号
while(op.size()&&h[op.top()]>=h[s[i]]) eval();
op.push(s[i]);
}
}
while(op.size()) eval();
cout<<num.top()<<endl;
return 0;
}
模拟队列
#include<iostream>
using namespace std;
const int N=1e5+10;
int q[N];
int main()
{
int n;
cin>>n;
int hh=0,tt=0;
while(n--)
{
string op;
int x;
cin>>op;
if(op=="push")
{
cin>>x;
q[tt++]=x;
}
else if(op=="pop") hh++;
else if(op=="empty")
{
if(hh<tt) puts("NO");
else puts("YES");
}
else cout<<q[hh]<<endl;
}
return 0;
}
单调栈
cin,cout速度大幅提高方法:
cin.tie(0);
ios::sync_with_stdio(false);
#include <iostream>
using namespace std;
const int N = 100010;
int stk[N], tt;
int main()
{
//cin.tie(0);
// ios::sync_with_stdio(false);
int n;
cin >> n;
while (n -- )
{
int x;
cin>>x;
while (tt && stk[tt] >= x) tt -- ; //不符合,出栈
if (!tt) cout<<"-1"<<" ";
else cout<<stk[tt]<<" ";
stk[ ++ tt] = x; //当前值入栈,与下一个数比较
}
return 0;
}
单调队列&滑动窗口
思路:
- 利用双端队列思想
- 设 队列q[hh],q[tt]分别表示窗口左边界(队头)与右边界(队尾),存储下标
- 用 i 表示窗口进程,则窗口范围【i-k+1,i】
(先求最小值)根据滑动窗口性质,队头的数会先消失,如果队尾插入的值比前一个数小,则前数不是最小值,所以直到出窗口也不会被输出
核心操作:如果队尾插入的值比前一个数小,那么将前一个数移出队列,最终队列会形成单调递增,取最小值永远在q[hh]处取
#include <iostream>
using namespace std;
const int N = 1000010;
int a[N], q[N];
int main()
{
int n, k;
scanf("%d%d", &n, &k);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
int hh=0,tt=-1;//分别表示左边界和右边界
for(int i=0;i<n;i++)
{
if(hh<=tt&&i-q[hh]+1>k) hh++;
while(hh<=tt&& a[q[tt]]>=a[i]) tt--;//不符合单增
q[++tt]=i;//先看前面元素与当前值是否构成单增再入队
if(i>=k-1) cout<<a[q[hh]]<<" ";//始终确保q[hh]为最小值,即单调递增序列
}
puts("");
hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
if (hh <= tt && i - k + 1 > q[hh]) hh ++ ;
while (hh <= tt && a[q[tt]] <= a[i]) tt -- ; //对于最大值,直接改为单调递减即可
q[ ++ tt] = i;
if (i >= k - 1) printf("%d ", a[q[hh]]);
}
puts("");
return 0;
}
KMP字符串
一个人能走的多远不在于他在顺境时能走的多快,而在于他在逆境时多久能找到曾经的自己。
------- KMP
#include<iostream>
using namespace std;
const int N=100010,M=1000010;
char q[N],s[M];
int ne[N];//保存next数组
int main()
{
int n,m;
cin>>n>>q+1>>m>>s+1;//下标均从1开始
for(int i=2,j=0;i<=n;i++)
//j表示匹配成功的长度,i表示q数组中的下标,因为q数组的下标是从1开始的,只有1个时,一定为0,所以i从2开始
{
while(j&&q[i]!=q[j+1]) j=ne[j];
//如果不行可以换到next数组
if(q[i]==q[j+1]) j++;
//成功了就加1
ne[i]=j;
//对应其下标
}
//j表示匹配成功的长度,因为刚开始还未开始匹配,所以长度为0
for(int i=1,j=0;i<=m;i++)
{
while(j&&s[i]!=q[j+1]) j=ne[j];
//如果匹配不成功,则换到j对应的next数组中的值
if(s[i]==q[j+1]) j++;
//匹配成功了,那么j就加1,继续后面的匹配
if(j==n)//如果长度等于n了,说明已经完全匹配上去了
{
printf("%d ",i-j);
//因为题目中的下标从0开始,所以i-j不用+1;
j=ne[j];
//为了观察其后续是否还能跟S数组后面的数配对成功
}
}
return 0;
}