- 博客(5)
- 收藏
- 关注
原创 【理论基础】深度强化学习(一)
深度强化学习(Deep Reinforcement Learning,DRL)将深度学习的感知能力和强化学习的决策能力相结合,可以直接根据输入的图像进行控制,是一种更接近人类思维方式的人工智能方法。深度学习具有较强的感知能力,但是缺乏一定的决策能力;而强化学习具有决策能力,对感知问题束手无策。因此,将两者结合起来,优势互补,为复杂系统的感知决策问题提供了解决思路。智能体与环境的不断交互(即在给定状态采取动作),进而获得奖励,此时环境从一个状态转移到下一个状态。
2025-01-11 23:30:00
1303
原创 【算法设计】永磁同步电机(PMSM)FOC算法
PMSM与BLDC虽然在转矩产生的物理机理上相同,但它们源于不同的应用领域。BLDC是PM BDC(永磁无刷直流电机)的派生词,而PMSM则是一种励磁磁场由永磁体提供的交流同步电机。两者最显著的区别在于控制方法:BLDC采用六步换向控制,PMSM则使用FOC(磁场定向控制)。FOC通过精确控制磁场实现高精度控制,具有转矩平稳、低噪声、高效率等特点。选择哪种电机主要取决于应用需求:高性能伺服系统通常选择PMSM配合FOC控制,而一般应用场合则可以选用成本较低的BLDC。
2024-11-09 21:52:51
2571
原创 四足机器人控制算法汇总
硬件部分传感器模块:包括深度相机、激光雷达和惯性测量单元(IMU),用于环境感知和导航。计算板卡:使用UP board和STM32F446微控制器进行数据处理和控制。SLAM算法用于定位与建图。腿部运动控制板卡:通过CAN总线与多个腿部驱动器通信,实现精确的运动控制。无线通信:4G通信模块用于远程操作和数据传输。软件部分ROS(机器人操作系统):用于集成各种软件模块,包括视觉处理、障碍物检测、状态检测等。决策与规划:负责路径规划、避障和导航,确保机器人在复杂环境中的自主移动。底层控制。
2024-10-23 20:35:38
6474
1
原创 四足机器人算法验证流程框架
1.1 四足机器人项目系统框图图1.1 自足机器人软件硬件控制流程图(1)操作员通过遥控器给机械狗下发平动速度 和转向率命令;(2)机械狗接收到命令,质心COM生成参考轨迹并传送给身体和腿部控制器。(3)控制器根据用户输入命令和机器人状态,如果腿处于腿在摆动中,则使用“摆动腿控制器”,如果腿处于腿在支撑中,则使用“力控支撑腿控制器”(4)力和位置指令被发送到STM32微控制器,用于将电机指令传递给机器人的每条腿。
2023-12-26 10:39:37
3922
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人