day05_Spark SQL

day05_Spark SQL课程笔记

一、今日课程内容

  • 1- Spark SQL的基本介绍(了解)
  • 2- Spark SQL的入门案例(了解)
  • 3- DataFrame详解(掌握)
  • 4- Spark SQL的综合案例(熟悉)

在这里插入图片描述

今日目的:掌握DataFrame详解

二、Spark SQL 基本介绍(了解)

https://spark.apache.org/sql
在这里插入图片描述

1、什么是Spark SQL

Spark SQL是Spark多种组件中其中一个,主要是用于处理大规模的**【结构化数据】**

什么是结构化数据: 一份数据, 每一行都有固定的列, 每一列的类型都是一致的 我们将这样的数据称为结构化的数据
例如: mysql的表数据
    1 张三 20
    2 李四 15
    3 王五 18
    4 赵六 12
  1. 简单来说:Spark SQL是Spark中用于处理结构化数据的模块,就像是“SQL与大数据之间的桥梁”,让用户能够用熟悉的SQL语句查询和分析大规模数据。

  2. 具体而言

    • 核心功能
      • DataFrame API:提供类似于Pandas DataFrame的API,支持结构化数据处理。
      • SQL查询:用户可以直接使用标准SQL语句查询数据,无需编写复杂的分布式计算代码。
      • 数据源集成:支持从多种数据源(如Hive、Parquet、JSON、JDBC)读取数据,并将结果写回到这些数据源。
      • 优化引擎:内置Catalyst优化器,能够自动优化查询计划,提升执行效率。
    • 应用场景
      • 在数据仓库中,使用Spark SQL查询和分析海量数据,生成报表和洞察。
      • 在ETL任务中,使用Spark SQL清洗和转换数据,提升数据处理效率。
      • 在实时分析中,结合Structured Streaming,使用Spark SQL处理实时数据流。
  3. 实际生产场景

    • 在电商平台中,使用Spark SQL分析用户行为数据,生成个性化推荐。
    • 在金融领域,使用Spark SQL处理交易数据,进行风险分析和预测。
  4. 总之:Spark SQL结合了SQL的易用性和Spark的分布式计算能力,为结构化数据处理提供了高效、灵活的工具,广泛应用于数据分析和处理任务。

为什么 Spark SQL 是“SQL与大数据之间的桥梁”?

  1. 连接 SQL 与分布式计算

    • SQL:传统SQL用于查询关系型数据库,适合小规模数据处理。
    • 大数据:分布式计算框架(如Spark)用于处理海量数据,但需要编写复杂代码。
    • Spark SQL:让用户能够用熟悉的SQL语句直接查询大规模数据,无需编写复杂的分布式计算代码,从而在SQL的易用性大数据的处理能力之间架起桥梁。
  2. 统一数据访问

    • SQL:通常只能访问关系型数据库。
    • Spark SQL:支持多种数据源(如HiveParquetJSONJDBC等),将不同数据源的数据统一为结构化数据,方便用SQL查询。
  3. 高性能优化

    • SQL:传统SQL引擎在处理大数据时性能有限。
    • Spark SQL:通过Catalyst优化器Tungsten引擎,自动优化查询计划,利用分布式计算和内存加速,提升大数据查询性能。
  4. 降低大数据处理门槛

    • SQL:数据分析师和开发者熟悉SQL,但可能不熟悉分布式计算。
    • Spark SQL:让这些用户无需学习复杂的分布式编程,直接用SQL处理大数据,降低了大数据处理的门槛。
  5. 支持复杂场景

    • SQL:适合简单的查询和分析。
    • Spark SQL:不仅支持标准SQL,还提供DataFrame API,支持复杂的数据处理逻辑(如ETL、机器学习数据准备),并可与Structured Streaming结合,处理实时数据流。

实际意义

Spark SQL通过将SQL的易用性与大数据的分布式计算能力结合,让用户能够轻松处理海量数据,同时保持高性能和灵活性,真正成为“SQL与大数据之间的桥梁”。

为什么要学习Spark SQL呢?

1-SQL的人, 一定比会大数据的人多
2- Spark SQL 既可以编写SQL语句, 也可以编写代码, 甚至可以混合使用
3- Spark SQL 可以 和 HIVE进行集成, 集成后, 可以替换掉HIVE原有MR的执行引擎, 提升效率
  1. 简单来说:学习Spark SQL就像是“掌握了一把万能钥匙”,能够轻松处理和分析大规模结构化数据,为数据驱动的业务决策提供强大支持。

  2. 具体而言

    • 高效处理大数据:Spark SQL基于Spark引擎,能够分布式处理TB甚至PB级数据,远超传统数据库的性能。
    • SQL的易用性:使用标准SQL语句查询数据,降低学习成本,尤其适合熟悉SQL的数据分析师和开发人员。
    • 多数据源支持:支持从Hive、Parquet、JSON、JDBC等多种数据源读取数据,满足复杂的数据集成需求。
    • 与Spark生态无缝集成:Spark SQL可以与Spark的其他模块(如MLlib、GraphX、Structured Streaming)无缝集成,支持从数据清洗到机器学习、实时分析的完整流程。
    • 优化性能:内置Catalyst优化器和Tungsten引擎,能够自动优化查询计划,提升执行效率。
  3. 实际生产场景

    • 在数据仓库中,使用Spark SQL快速查询和分析海量数据,生成业务报表。
    • 在实时分析中,结合Structured Streaming,使用Spark SQL处理实时数据流,支持实时决策。
    • 在机器学习中,使用Spark SQL清洗和准备数据,为模型训练提供高质量的数据输入。
  4. 总之:学习Spark SQL能够让你在大数据时代游刃有余,无论是数据分析、实时处理还是机器学习,都能找到用武之地,为职业发展和技术能力提升带来巨大价值。

Spark SQL特点:

1- 融合性: 既可以使用标准SQL语言, 也可以编写代码, 同时支持混合使用

2- 统一的数据访问: 可以通过统一的API来对接不同的数据源

3- HIVE的兼容性: Spark SQL可以和HIVE进行整合, 整合后替换执行引擎为Spark, 核心: 基于HIVE的metastore来处理

4- 标准化连接: Spark SQL也是支持 JDBC/ODBC的连接方式
  1. 简单来说:Spark SQL的特点就像是“瑞士军刀”,集成了SQL的易用性、Spark的分布式计算能力和强大的优化引擎,为结构化数据处理提供了高效、灵活的工具。

  2. 具体而言

    • 统一的数据访问:支持从多种数据源(如Hive、Parquet、JSON、JDBC)读取数据,并将结果写回到这些数据源。
    • SQL与DataFrame API:既支持标准SQL查询,又提供DataFrame API,适合不同开发习惯的用户。
    • 高性能优化:内置Catalyst优化器和Tungsten引擎,能够自动优化查询计划,提升执行效率。
    • 与Spark生态无缝集成:可以与Spark的其他模块(如MLlib、GraphX、Structured Streaming)无缝集成,支持从数据清洗到机器学习、实时分析的完整流程。
    • Hive兼容性:完全兼容Hive,支持HiveQL查询和Hive元数据访问,方便从Hive迁移到Spark SQL。
    • 结构化数据处理:专门为结构化数据设计,支持复杂的数据类型(如嵌套结构、数组、Map等)。
    • 实时数据处理:结合Structured Streaming,支持实时数据流的SQL查询和分析。
  3. 实际生产场景

    • 在数据仓库中,使用Spark SQL快速查询和分析海量数据,生成业务报表。
    • 在实时分析中,结合Structured Streaming,使用Spark SQL处理实时数据流,支持实时决策。
    • 在机器学习中,使用Spark SQL清洗和准备数据,为模型训练提供高质量的数据输入。
  4. 总之:Spark SQL凭借其强大的功能和灵活的接口,成为大数据处理领域的利器,无论是数据分析、实时处理还是机器学习,都能发挥重要作用。

为什么 Spark SQL 像“瑞士军刀”?

  1. 多功能性

    • 瑞士军刀:集多种工具于一身,应对不同任务。
    • Spark SQL:集成SQL查询、DataFrame API、流处理等功能,适应多种数据处理场景。
  2. 灵活性

    • 瑞士军刀:工具切换灵活,适应不同需求。
    • Spark SQL:支持多种数据源(如HiveParquetJSON等)和开发方式(SQLAPI),满足不同开发习惯。
  3. 高效性

    • 瑞士军刀:设计精巧,使用效率高。
    • Spark SQL:通过Catalyst优化器Tungsten引擎,自动优化查询计划,利用列式存储和内存计算加速处理。
  4. 广泛适用性

    • 瑞士军刀:适用于多种场景。
    • Spark SQL:覆盖批处理实时流处理机器学习等,适用于数据仓库、实时分析、数据湖等多种场景。
  5. 易用性

    • 瑞士军刀:操作简单,易于使用。
    • Spark SQL:兼容Hive,支持标准SQL,降低大数据处理门槛。

SparkSQL发展历史:

20141.0正式发布
● 20151.3  发布DataFrame数据结构, 沿用至今
● 20161.6 发布Dataset数据结构(带泛型的DataFrame), 适用于支持泛型的语言(Java\Scala)20162.0 统一了Dataset 和 DataFrame, 以后只有Dataset了, Python用的DataFrame就是 没有泛型的Dataset
注意: 20193.0 发布, 性能大幅度提升,SparkSQL变化不大

在这里插入图片描述

2、Spark SQL 与 HIVE异同

相同点:

1- 都是分布式SQL计算引擎
2- 都可以处理大规模的结构化数据
3- 都可以建立Yarn集群之上运行

不同点:

1- Spark SQL是基于内存计算, 而HIVE SQL是基于磁盘进行计算的
2- Spark SQL没有元数据管理服务(自己维护), 而HIVE SQL是有metastore的元数据管理服务的
3- Spark SQL底层执行Spark RDD程序, 而HIVE SQL底层执行是MapReduce
4- Spark SQL可以编写SQL也可以编写代码,但是HIVE SQL仅能编写SQL语句
  1. 简单来说:Spark SQL和Hive都是用于处理大规模结构化数据的工具,但Spark SQL更像是“高性能跑车”,而Hive则是“可靠的卡车”,两者各有优劣,适合不同的场景。

  2. 具体而言

    • 相同点
      • SQL支持:两者都支持标准SQL查询,降低了使用门槛。
      • 大数据处理:都适用于处理大规模结构化数据,支持TB甚至PB级数据。
      • Hive兼容性:Spark SQL完全兼容Hive,支持HiveQL查询和Hive元数据访问。
    • 不同点
      • 执行引擎
        • Spark SQL基于Spark引擎,采用内存计算,适合迭代计算和实时处理。
        • Hive基于MapReduce引擎,采用磁盘计算,适合离线批处理。
      • 性能
        • Spark SQL的性能通常优于Hive,尤其是在复杂查询和迭代计算场景中。
        • Hive在处理超大规模数据时稳定性更高,但速度较慢。
      • 实时性
        • Spark SQL支持实时数据处理(通过Structured Streaming)。
        • Hive主要用于离线批处理,实时性较差。
      • 易用性
        • Spark SQL提供DataFrame API,支持多种编程语言(如Python、Scala、Java),开发更灵活。
        • Hive主要依赖SQL,扩展性较弱。
  3. 实际生产场景

    • 在需要快速迭代和实时分析的场景中,如用户行为分析,Spark SQL更为适合。
    • 在超大规模离线批处理场景中,如历史数据归档,Hive更为稳定可靠。
  4. 总之:Spark SQL和Hive各有优势,选择时需根据业务需求、数据规模和性能要求综合考虑。两者也可以结合使用,发挥各自的优势。

3、Spark SQL的数据结构对比

在这里插入图片描述

说明:
	pandas的DataFrame: 二维表  处理单机结构数据
	SparkCore的RDD: 处理任何的数据结构   处理大规模的分布式数据
	SparkSQL的DataFrame: 二维表  处理大规模的分布式结构数据

在这里插入图片描述

RDD(Resilient Distributed Dataset)是Spark中最基本的抽象,代表了一个不可变、分布式的数据集合。RDD支持并行操作,可以在集群中的多个节点上进行处理。RDD具有容错性,即使在节点故障时也能够自动恢复。但是RDD只提供了基本的功能,对于结构化数据的处理能力有限。

DataFrame是Spark SQL中的一个概念,它是一种以列为主的分布式数据集合,类似于关系型数据库中的表格。DataFrame具有数据结构化的特点,每一列都有相应的数据类型,而且可以使用SQL语句进行查询和操作。DataFrame也支持大部分RDD的操作,但是在处理结构化数据方面更加方便。

DataSet是Spark 2.0引入的一种新的API,它是DataFrame的一个扩展,提供了类型安全的数据操作。DataSet在编译时检查数据类型,可以避免一些运行时的错误。与DataFrame相比,DataSet更加适用于需要强类型支持的场景,但是在灵活性和易用性方面可能略逊于DataFrame。


由于Python不支持泛型, 所以无法使用Dataset类型, 客户端仅支持DataFrame类型

三、Spark SQL的入门案例(掌握)

在这里插入图片描述

SparkSession 和 SparkContext 是 Apache Spark 中两个重要的组件,它们在 Spark 应用程序中扮演着不同的角色。

SparkContext:
        SparkContext 是 Spark 1.x 版本中最重要的入口点,在 Spark 2.x 版本中,它已经被 SparkSession 取代,但在一些旧的代码和文档中仍然可能会看到它的存在。
        SparkContext 是 Spark 应用程序与 Spark 集群通信的主要入口点。它负责与集群管理器(如 YARN、Mesos 或 Spark 自带的 Standalone)通信,以便分配资源和执行任务。
        SparkContext 提供了创建 RDD(弹性分布式数据集)的功能,RDD 是 Spark 中基本的数据抽象,代表了分布在集群中的不可变的数据集。
        

SparkSession:
        在 Spark 2.x 中,SparkSession 被引入来取代 SparkContext,并提供了更多功能和简化的 API。,它是 Spark 应用程序中的入口点,封装了 SparkContext。
        SparkSession 提供了一种统一的入口点,用于读取数据、执行查询、进行数据处理等各种 Spark 任务。
        SparkSession 提供了 DataFrame 和 Dataset API,这两种 API 提供了更高级别、更易于使用的抽象,用于处理结构化数据。
        与 SparkContext 不同,SparkSession 可以与 Hive 集成,允许在 Spark 应用程序中执行 SQL 查询,并访问 Hive 中的表和数据。

总之,SparkContext 是 Spark 1.x 版本中的主要入口点,负责与集群通信和管理资源,而 SparkSession 是 Spark 2.x 中的主要入口点,提供了更多的功能和简化的 API,用于执行各种 Spark 任务,并且可以与 Hive 集成。还可以通过SparkSession对象还是可以得到SparkContext对象。

入门体验

# 导包
import os
from pyspark.sql import SparkSession

# 绑定指定的python解释器

os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

# 创建main函数
if __name__ == '__main__':
    # 1.创建SparkContext对象
    spark = SparkSession.builder.appName('pyspark_demo').master('local[*]').getOrCreate()
    sc = spark.sparkContext
    # print(spark,type(spark))
    # print(sc,type(sc))

    # 2.验证是否能生成rdd
    textRDD = sc.textFile('file:///export/data/spark_project/spark_sql/data/uniqlo.csv')
    # collect: 搜集数据触发任务展示数据  count:获取数据条数  type:查看类型
    # print(textRDD.collect())
    print(textRDD.count())
    print(type(textRDD)) # <class 'pyspark.rdd.RDD'>

    # 验证是否能生成DataFrame
    df = spark.read.csv('file:///export/data/spark_project/spark_sql/data/uniqlo.csv')
    # show: 展示数据  count:获取数据条数  type:查看类型
    # print(df.show())
    print(df.count())
    print(type(df)) # <class 'pyspark.sql.dataframe.DataFrame'>

    # 3.关闭资源
    sc.stop()
    spark.stop()

四、DataFrame详解(熟悉)

1.DataFrame基本介绍

在这里插入图片描述

DataFrame表示的是一个二维的表。二维表,必然存在行、列等表结构描述信息

表结构描述信息(元数据Schema): StructType对象
字段: StructField对象,可以描述字段名称、字段数据类型、是否可以为空
行: Row对象
列: Column对象,包含字段名称和字段值

在一个StructType对象下,由多个StructField组成,构建成一个完整的元数据信息

如何构建表结构信息数据:
在这里插入图片描述

2.DataFrame的构建方式

方式1: 使用SparkSession的createDataFrame(data,schema)函数创建
    data参数
        1.基于List列表数据进行创建
        2.基于RDD弹性分布式数据集进行创建
        3.基于pandas的DataFrame数据进行创建
    schema参数
        1: 字符串
            格式一 :“字段名1 字段类型,字段名2 字段类型”
            格式二(推荐):“字段名1:字段类型,字段名2:字段类型”
        2: List
            格式: ["字段名1","字段名2"]  
        3: DataType(推荐,用的最多)
           格式一:schema=StructType().add('字段名1',字段类型).add('字段名2',字段类型)
           格式二:schema=StructType([StructField('字段名1',类型),StructField('字段名1',类型)])
 
方式2: 使用DataFrame的toDF(colNames)函数创建
	DataFrame的toDF方法是一个在Apache Spark的DataFrame API中用来创建一个新的DataFrame的方法。这个方法可以将一个RDD转换为DataFrame,或者将一个已存在的DataFrame转换为另一个DataFrame。在Python中,你可以使用toDF方法来指定列的名字。如果你不指定列的名字,那么默认的列的名字会是_1, _2等等。 
	格式: rdd.toDF([列名])


方式3: 使用SparkSession的read()函数创建
    在 Spark 中,SparkSession 的 read 是用于读取数据的入口点之一,它提供了各种方法来读取不同格式的数据并将其加载到 Spark 中进行处理。
    统一API格式: 
        spark.read
            .format('text|csv|json|parquet|orc|...')  : 读取外部文件的方式
            .option('k','v')   : 选项  可以设置相关的参数 (可选)
            .schema(StructType | String)  :  设置表的结构信息
            .load('加载数据路径')  : 读取外部文件的路径, 支持 HDFS 也支持本地
    简写API格式:
        注意: 以上所有的外部读取方式,都有简单的写法。spark内置了一些常用的读取方案的简写
        格式: spark.read.文件读取方式('加载数据路径')

        注意: parquet:是Spark中常用的一种列式存储文件格式和Hive中的ORC差不多, 他俩都是列存储格式

2.1 createDataFrame()创建

场景:一般用在开发和测试中。因为只能处理少量的数据

2.1.1 基于列表
# 导包
import os
from pyspark.sql import SparkSession

# 绑定指定的python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

# 创建main函数
if __name__ == '__main__':
    # 1.创建SparkContext对象
    spark = SparkSession.builder.appName('pyspark_demo').master('local[*]').getOrCreate()

    # 2.创建DF对象
    data = [(1, '张三', 18)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十六ᵛᵃᵉ

停船靠岸_愿君通关

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值