第一部分:基本含义和作用
数据透视表可以对大量数据进行汇总,例如求和、计数、平均值、最大值和最小值等。它能够快速显示数据的整体趋势和分布。
第二部分:excel/wps内部的数据透视表实现方式
(1)打开文件,点击右上角的搜索按钮,搜索“数据透视表”
(2)点击选择范围按钮
(3)选择所有范围
(4)点击确定
之后就成功地创建了数据透视表!
(5)进入数据透视表后,勾选右侧的三个参数
(6)选择不同的数据统计操作(我们这里选择求和汇总)
(7)选择右上角的数据透视图,并进行绘图显示
(8)效果
之后精美的图片就出现了!
第三部分:使用python中matplotlib库进行数据的统计分析
(1)完整代码
import pandas as pd
import matplotlib.pyplot as plt
from pylab import mpl
# 设置中文显示字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
# 读取Excel文件
file_path = '华为与小米2023年销量.xlsx' # 请根据你的文件路径调整此处
df = pd.read_excel(file_path)
# 创建数据透视表,按月份汇总华为和小米的销量
pivot_table = df.pivot_table(values=['华为手机销量', '小米手机销量'], index='月份')
# 绘制柱状图
pivot_table.plot(kind='bar', figsize=(10, 6))
plt.title('2023年华为与小米手机各月销售量') # 设置图表标题
plt.xlabel('月份') # 设置x轴标签
plt.ylabel('销量(台)') # 设置y轴标签
plt.xticks(rotation=0) # 保持月份标签水平显示
plt.grid(axis='y') # 只显示y轴的网格线
plt.legend(title='品牌') # 添加图例标题
plt.tight_layout() # 自动调整布局
plt.show() # 显示图表
(2)运行结果

可以发现,python中matplotlib库对数据的处理也是非常迅猛的!
资源获取:
通过网盘分享的文件:数据透视表实现数据可视化处理操作excel和python代码实现!.zip
链接: https://pan.baidu.com/s/1MVpimDuDo4PDeWPsP30eIw?pwd=p9j9 提取码: p9j9
--来自百度网盘超级会员v5的分享
好啦,希望能够帮助到大家!