fedmezo零阶优化算法论文《On the Convergence of Zeroth-Order Federated Tuning for Large Language Models》

第一部分:解决的问题

联邦学习与LLMs的结合:联邦学习(FL)是一种重要的机器学习范式,特别适用于数据分散和隐私保护的场景。大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但其微调过程需要大量计算资源,尤其是在客户端资源有限的情况下,面临巨大挑战。

反向传播的问题:反向传播需存储大量中间激活值,对内存要求高,尤其在LLMs这种高参数模型中,内存消耗极大。

第二部分:算法思路

FedMeZO通过零阶优化(ZOO)替代了传统联邦学习中基于反向传播(BP)的梯度计算方式。

FedMeZO算法:记忆高效的ZOO方法MeZO与联邦学习结合,形成FedMeZO算法。该算法通过两要点梯度估计器减少训练内存,并利用低秩适应(LoRA)减少通信开销,两者结合,FedMeZO从训练内存层面优化,LoRA从通信成本层面优化,共同实现联邦学习中LLMs微调的高效性、低资源消耗特性。

理论分析:论文分析了FedM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值