第一部分:解决的问题
联邦学习与LLMs的结合:联邦学习(FL)是一种重要的机器学习范式,特别适用于数据分散和隐私保护的场景。大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但其微调过程需要大量计算资源,尤其是在客户端资源有限的情况下,面临巨大挑战。
反向传播的问题:反向传播需存储大量中间激活值,对内存要求高,尤其在LLMs这种高参数模型中,内存消耗极大。
第二部分:算法思路
FedMeZO通过零阶优化(ZOO)替代了传统联邦学习中基于反向传播(BP)的梯度计算方式。
FedMeZO算法:将记忆高效的ZOO方法MeZO与联邦学习结合,形成FedMeZO算法。该算法通过两要点梯度估计器减少训练内存,并利用低秩适应(LoRA)减少通信开销,两者结合,FedMeZO从训练内存层面优化,LoRA从通信成本层面优化,共同实现联邦学习中LLMs微调的高效性、低资源消耗特性。
理论分析:论文分析了FedM