cifar10数据集转图片

第一部分:需求分析

将测试集的第一条转化为图片格式

第二部分:代码实现

import numpy as np
import pickle
from PIL import Image
import os
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10

# 创建保存图片的目录
os.makedirs('test', exist_ok=True)

# 修改生成图片的代码(添加归一化)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))  # 添加训练时的归一化
])
testset = CIFAR10(root='./data', train=False, download=True, transform=transform)
image, label = testset[0]

# 反归一化以保存可视化的图片
mean = np.array([0.4914, 0.4822, 0.4465])
std = np.array([0.2023, 0.1994, 0.2010])
img = image.numpy().transpose(1, 2, 0)
img = (img * std + mean) * 255  # 反归一化并转到[0,255]
img = img.clip(0, 255).astype(np.uint8)
img_path = f'test/{label}_0.jpg'
print("生成结束")
Image.fromarray(img).save(img_path)

第三部分:效果

输出的label为3代表是猫。

(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值