P3366 【模板】最小生成树(c语言)

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N,M,表示该图共有 N 个结点和 M 条无向边。

接下来 M 行每行包含三个整数 Xi​,Yi​,Zi​,表示有一条长度为 Zi​ 的无向边连接结点 Xi​,Yi​。

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

输入输出样例

输入 #1复制

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出 #1复制

7

说明/提示

数据规模:

对于 20%20% 的数据,N≤5,M≤20。

对于 40%40% 的数据,N≤50,M≤2500。

对于 70%70% 的数据,N≤500,M≤104。

对于 100%100% 的数据:

1≤N≤5000,1≤M≤2×105,1≤Zi​≤104。

样例解释:

所以最小生成树的总边权为 2+2+3=72+2+3=7。

 本题笔者用的是最小生成树布鲁克斯算法,其实就是在并查集的基础加了一个快排和一个权值。

而它的算法思想就是按权值大小找边,从权值小的开始找,最得到最小生成树。

#include<stdio.h>
#include<stdlib.h>
int sum=0,t=0;
int a[5001];
struct node
{
	int x;
	int y;
	int z;
};
struct node b[200001];

int cmp(void* a1, void* b1)//快排
{
    struct node a = *(struct node*) a1;
    struct node b = *(struct node*) b1;
    return a.z - b.z;
}
void init(int m);
void merge(int x,int y,int z);
int getf(int z);
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	init(n);
	for(int i=0;i<m;i++)
	scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].z);
	qsort(b, m, sizeof(struct node), cmp);
	for(int i=0;i<m;i++)
	printf("%d %d %d\n",b[i].x,b[i].y,b[i].z);
	for(int i=0;i<m;i++)
	{
		merge(b[i].x,b[i].y,b[i].z);
		if(t==n-1)
		break;
	}
	if(t==n-1)//判断是否生成最小树;
	printf("%d",sum);
	else
	printf("orz");
	return 0;
}
void init(int m)
{
	for(int i=1;i<m;i++)
	a[i]=i;
}
void merge(int x,int y,int z)
{
	int tx,ty;
	tx=getf(x);
	ty=getf(y);
	if(tx!=ty)
	{
		a[ty]=tx;
		sum+=z;//权值累加
		t++;//计入找到的边的个数
	}
}
int getf(int i)
{
	if(a[i]==i)
	return i;
	else
	{
		a[i]=getf(a[i]);
		return a[i];
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值