生成了一个AI算法

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,)) # MNIST单通道归一化
])
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_data = datasets.MNIST(root='./data', train=False, transform=transform)

# 2. 模型定义
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.layers = nn.Sequential(
            nn.Linear(28*28, 128), # 输入层
            nn.ReLU(),             # 激活函数
            nn.Dropout(0.2),       # 防过拟合
            nn.Linear(128, 10)     # 输出层(10分类)
        )
    def forward(self, x):
        x = self.flatten(x)
        return self.layers(x)

# 3. 训练配置
model = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
batch_size = 64
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)

# 4. 训练循环
for epoch in range(10):
    for images, labels in train_loader:
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 5. 评估
test_loader = torch.utils.data.DataLoader(test_data, batch_size=256)
correct = 0
with torch.no_grad():
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs, 1)
        correct += (predicted == labels).sum().item()
print(f'准确率: {100 * correct / len(test_data):.2f}%')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cmakerpymakerhtmler

能为我买一杯咖啡吗谢谢你的帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值