- 博客(19)
- 收藏
- 关注
原创 关联表操作
因为我们的表格是相关联的,所以比如在插入员工数据的时候,如果branch_id=1,但是当下branch表格中并没有数据,就会导致插入错误,所以我们需要先在branch中插入数据。而branch中的manager_id中也是没有数据的,所以我们在插入的时候先把manager_id设置为null。表示的是,不管 employee.emp_id = branch.manager_id 成立与否,都会返回左边表(employee表)的所有数据,而右边的表只返回条件成立的数据。
2025-04-06 21:51:14
335
原创 数据表操作
select count(name) as "总人数", sum(score) as "总分", avg(score) as "平均分" from stu;INSERT INTO stu VALUES(6, "小绿", NULL), (7, "小行星", "语文");UPDATE stu SET major = "生化" WHERE major = "生物" or major = "化学";SELECT * FROM stu where major in("英语", "语文", "数学");
2025-04-06 21:48:57
737
原创 9、py元类
***** 在所有类执行时,会先执行__new__方法, new方法会先实例化对象,然后再执行init方法,在init中进行初始化,而我们平时使用的class 类名:这种创建方式的本质也是使用type来创建的 ******metaclass参数默认是type,即Foo类是基于type创建的,现在我们可以把它改成我们自己写的类,而这个类,是用来创建Foo类的。类和对象的关系:先有类,才能实例化对象。我们的MyType也是可以创建类了。
2025-03-08 17:55:33
160
原创 数字信号处理——第四章、快速傅里叶变换(FFT)
计算一个k值需要N次乘法,N个k就需要N*N次乘法,计算次数巨大。所以我们可以将N点DFT分解为几个较短的DFT。在计算X(0)-X(4)时,使用(4.2.7)计算,X(5)-X(7)使用(4.2.8)计算。基-2FFT算法分为两类:时域抽取法(DIIT-FFT)和频域抽取法(DIF-FFT)序列x(n)可以按n的奇偶分解成N/2的子序列。上述FFT算法流程也可以用于计算IDFT。
2024-12-30 10:42:33
1101
原创 数字信号处理——第三章、离散傅里叶变换(DFT)
XkDFTxn∑n0N−1xnWNknk0123N−1XkDFTxn)]n0∑N−1xnWNknk0123N−1$\textcolor{Red}{离散傅里叶逆变换为:} $xnIDFTXk1N∑k0N−1XkWN−knn0123N−1WNe−j2πN\\xnIDFTXk)]N1k。
2024-12-30 10:36:09
841
原创 数字信号处理——第二章、时域离散信号和系统的频域分析
XejwFTxn∑n−∞∞xne−jwnXejwFTxn))n−∞∑∞xne−jwnxn12π∫−ππXejwejwndwxn2π1∫−ππXejwejwndw离散时间的傅里叶变换的是连续且周期的,周期为2Π双边Z变换:Xz∑n−∞∞xnz−n单边Z变换:Xz∑n0∞xnz−n。
2024-12-29 11:59:28
624
原创 数字信号处理——第一章、时域离散信号和时域离散系统
x(n),y(n)分别时系统的输入序列和输出序列,ai和bi均为常数,式中y(n-i)和x(n-i)项只有一次幂,也没有相互较差相乘项,故称为线性常系数差分方程。如果系统是因果的,一般在输入x(n)=0(n
2024-12-27 21:23:59
1305
原创 机器学习入门基础微课版——第九章、决策树
预剪枝指在决策树生成的过程中,对每个结点在划分前线进行估计,若当前节点的划分不能带来决策树泛化能力的提升,则同值划分并将当前结点标记为叶节点。信息增益使用了信息理论中的,表示的是信息的混乱程度,熵越小的时候信息越纯,说明分类的效果越好,所以在每个分裂节点选取熵值最小的特征,即选取信息增益最大的特征作为分裂节点。地对非叶节点进行考察,若将该节点对应的子树替换为叶节点能带来决策树泛化性能的提升,则将该子树替换为叶节点。从根节点开始,递归地产生决策树,不断地选取局部最优的特征,将训练集分割成能够正确分类的子集。
2024-12-25 22:39:45
806
原创 机器学习入门基础微课版——第七章、KNN算法
假设有六个二维数据点,构建KD树的过程:D={(2,3), {5,7}, (9,6), (4,5), (6,4), (7,2)}KD树也可称为k维树,可以用更高的效率对空间进行划分,使用树来存储训练数据,并且其结构非常适合寻找最近邻居和碰撞检测。②根据x轴和y轴上数据的方差,选择方差最大的那个轴作为第一轮划分轴。KD树搜索时KNN算法至关重要的一步,给定点p,查询在数据集中与其距离最近的点的过程即为最近邻搜索。①从x轴开始划分,根据x轴的取值2,5,9,4,6,7得到中位数6,因此切分线为x=6。
2024-12-25 22:36:41
848
原创 机器学习入门基础微课版——第六章、朴素贝叶斯
朴素贝叶斯是典型的生成学习方法,生成方法由训练数据学习联合概率分布P(X,Y),然后求得后验概率分布P(Y|X)。P(Y|X)为后验概率,P(X|Y)为似然度,P(Y)为先验概率,P(X)为边际似然度,X为特征,Y为模型结果。先验概率指根据以往经验和分析得到的概率,在这里用P(Y)代表在没有训练数据签假设Y拥有的初始概率。是一种用于平滑分类数据的技术,引入拉普拉斯平滑法可以解决0概率问题:为每个计数+1。朴素贝叶斯分类是贝叶斯分类中最简单,也是最常见的一种分类方法。,所学到的模型分别称为。
2024-12-25 22:34:11
876
原创 机器学习入门基础微课版——第五章、逻辑回归
Sigmoid函数的取值范围是(0,1),可以将实数映射到(0,1)区间,可以用来做二分类。在监督学习中,当输出变量Y取有限各离散数值时,预测问题便成为分类问题。逻辑回归是经典的分类方法,虽然称为回归,但实际上是。损失函数又叫误差函数,逻辑回归的损失函数为。主要应用于分类问题,比如垃圾邮件的分类。并常用二分类,是分类问题的首选算法。1、构造函数:Sigmoid函数。y’为预测值,y为真实值。
2024-12-25 22:30:08
926
原创 机器学习入门基础微课版——第四章、线性回归
时一种通过属性的线性组合来进行预测的线性模型,其目的时找到一条直线或者一个平面或者更高维的超平面,是的预测值与真是值之间的误差最小化。
2024-12-25 22:29:36
717
原创 机器学习入门基础微课版——第十三章、聚类
监督学习:即输入的训练集有标签y。监督学习的目标是找到能区分正样本和负样本的决策边界,因此需要据此拟合一个假设函数无监督学习:即数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面聚类:如何将教师里的学生按爱好、身高划分成五类?降维:如何将原高维空间中的数据点映射到低维度的空间中?关联规则:很多买尿布的男顾客,同时买了啤酒,可以从中找出说明规律来提高超市销售额?推荐系统:很多客户经常上网购物,根据他们浏览商品的习惯,给他们推荐什么商品?
2024-12-25 20:30:19
419
原创 机器学习入门基础微课版——第十二章、支持向量机
支持向量机是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。与逻辑回归和神经网络相比,支持向量机在学习复杂的非线性方程时提供了一种更为清晰,更为强大的方式。(简单来说,将数据分成两类有许多条线,但是需要找到一条距离两边数据都很远的线)
2024-12-25 20:13:23
884
原创 机器学习入门基础微课版——第十四章、降维与主要成分分析(期末复习笔记)
降维灾难通常是指在涉及向量计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。模型特征会随着特征的增加先上升后下降奇异值分解时在机器学习领域广泛应用的算法,它不仅可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。时很多机器学习算法的基石。正交矩阵U、对角矩阵Σ、正交矩阵V的转置U。
2024-12-25 19:16:24
1109
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人