蓝桥杯每日真题 - 第15天

题目:(钟表)

题目描述(13届 C&C++ B组B题)

解题思路:

  1. 理解钟表指针的运动

    • 秒针每分钟转一圈,即每秒转6度。

    • 分针每小时转一圈,即每分钟转6度。

    • 时针每12小时转一圈,即每分钟转0.5度。

  2. 计算角度

    • 秒针的角度 S=6m(其中 m 是秒)。

    • 分针的角度 M=6f+0.1m(其中 f 是分)。

    • 时针的角度 H=30s+0.5f+0.0083m(其中 s 是小时)。

  3. 计算夹角

    • 分针和时针的夹角 A=∣H−M∣。

    • 分针和秒针的夹角 B=∣M−S∣。

  4. 条件判断

    • 需要满足 A=2B。

  5. 遍历时间

    • 从 s=0 到 s=6,ff 从 0 到 59,mm 从 0 到 59,检查每个时间点是否满足条件。

代码实现(C语言):

#include <stdio.h>
#include <stdlib.h>

int main()
{
    int h = 0, m = 0, s = 0; // 时、分、秒
    double A, B, H, M, S;    // A、B 表示题目中的夹角,H、M、S 表示时针、分针、秒针的度数

    while (h < 6) // 时针只需遍历 0~6
    {
        s++; // 秒针每秒加一
        if (s == 60) // 秒针转一圈
        {
            s = 0;
            m++;
        }
        if (m == 60) // 分针转一圈
        {
            m = 0;
            h++;
        }

        // 计算秒针、分针、时针当前的位置(以度数为单位)
        S = s * 6.0;                           // 秒针每秒走6度
        M = (m + s / 60.0) * 6.0;              // 分针每分钟走6度,并加上秒针带来的细微变化
        H = (h + m / 60.0 + s / 3600.0) * 30.0; // 时针每小时走30度,并加上分针和秒针带来的变化

        // 计算时针与分针的夹角 A
        A = (H > M) ? (H - M) : (M - H);
        if (A > 180) A = 360 - A; // 确保 A 在 [0, 180] 范围内

        // 计算分针与秒针的夹角 B
        B = (S > M) ? (S - M) : (M - S);
        if (B > 180) B = 360 - B; // 确保 B 在 [0, 180] 范围内

        // 判断是否满足 A = 2B
        if (A == 2 * B)
        {
            // 找到答案后直接跳出循环
            break;
        }
    }

    // 输出时、分、秒
    printf("%d %d %d\n", h, m, s);
    return 0;
}

得到运行结果:

代码分析: 

变量说明

  • h, m, s:分别表示小时、分钟、秒的整数值。

  • H, M, S:分别表示时针、分针、秒针所指向的具体角度(度数)。

  • A, B:分别表示时针与分针的夹角、分针与秒针的夹角。

角度计算

  • 秒针的角度[ S = s \times 6.0 ]。秒针每秒钟走 6 度。

  • 分针的角度[ M = (m + \frac{s}{60.0}) \times 6.0 ]。分针每分钟走 6 度,且秒针的细微变化会影响分针的位置。

  • 时针的角度[ H = (h + \frac{m}{60.0} + \frac{s}{3600.0}) \times 30.0 ]。时针每小时走 30 度,同时分针和秒针也会微调时针的位置。

夹角计算

  • 两个指针的夹角:是大角减小角,如果夹角大于 180 度,取补角。

  • 时针与分针夹角 A
    [ A = (H > M) ? (H - M) : (M - H); ]
    [ \text{if } A > 180 \text{ then } A = 360 - A; ]

  • 分针与秒针夹角 B
    [ B = (S > M) ? (S - M) : (M - S); ]
    [ \text{if } B > 180 \text{ then } B = 360 - B; ]

判断条件

  • 只需判断是否满足 ( A = 2B )。

循环终止

  • 当找到符合条件的时、分、秒时,用 break 终止循环,输出结果即可。

难度分析

⭐️⭐️⭐️

总结

这段代码通过模拟时钟的运行,计算出在一天中的某个时刻,时针和分针的夹角是分针和秒针夹角的两倍。这个问题考察了对时间的理解和指针运动的计算,以及如何将这些计算转化为代码实现。

<think>嗯,用户想找蓝桥杯与食堂相关的真题或解题思路。首先,我需要回顾一下用户提供的引用内容,看看是否有相关的信息。引用[3]提到了食堂同寝室同时就餐的问题,这可能就是用户需要的题目类型。那篇引用中提到了a3>1a3==1的情况,涉及到六人桌四人桌的安排,可能是一道关于资源分配或排队的算法题。 接下来,我需要确定用户的具体需求。他们可能在准备蓝桥杯竞赛,遇到了食堂相关的题目,或者想练习这类问题。用户提供的引用中,引用[3]具体描述了一个场景,需要处理不同桌型的占用情况,可能涉及条件判断逻辑分析。 然后,我需要分析这类题目的解题思路。通常,这类问题会考察模拟、贪心算法或动态规划。比如,根据不同的餐桌占用情况,合理安排学生就餐,可能需要优先安排大桌以减少资源浪费,或者根据现有条件调整策略。例如,引用[3]中的情况,当六人桌全被占时,需要排空四人桌,这可能涉及到如何最优利用现有资源。 此外,用户提供的其他引用,如引用[1][2],提到蓝桥杯侧重思维基础,尤其是数学方面的考察。这可能意味着食堂相关的题目不仅仅是编程实现,还包含数学建模或逻辑推理的部分。例如,计算最优的座位安排,或者处理时间冲突的问题。 接下来,我应该整理可能的解题步骤。首先,明确题目中的变量条件,比如不同桌型的数量、学生的分组情况等。然后,确定优先级,比如先安排大桌还是小桌,如何处理剩余人数。之后,编写条件判断来处理各种情况,比如当六人桌不够时如何处理,四人桌的安排等。 另外,需要考虑边界情况,例如当没有足够桌子时的处理,或者当学生人数正好整除桌型的情况。同时,可能涉及到数据结构的选择,比如使用数组来记录各桌型的占用情况,或者用变量来跟踪可用数量。 最后,根据引用[3]中的例子,当a3>1时,说明六人桌已满,需要排空四人桌。这可能意味着当某些条件满足时,必须调整其他资源的使用。因此,在解题时,需要仔细处理这些条件,确保所有可能的情况都被覆盖。 总结来说,用户需要的是关于蓝桥杯中食堂场景的算法题解析,可能涉及模拟条件判断,重点在于资源分配逻辑处理。接下来,我需要将这些思路整理成清晰的步骤,并提供示例代码可能的相关问题,帮助用户更好地理解应用。</think>根据蓝桥杯真题中与食堂相关的题目特点,这类问题通常涉及逻辑分析、资源分配或时间规划。以下结合引用内容整理解题思路及示例: --- ### **食堂就餐问题典型解题思路** 1. **问题建模** 根据题目描述(如引用[3])建立变量表示餐桌状态: - 使用$a_3$表示六人桌的占用情况($a_3>1$表示六人桌全被占用) - 使用$b_6$表示六人桌剩余数量 - 类似地定义四人桌、双人桌的变量 2. **优先级分配策略** - 优先安排大桌以减少资源浪费,例如六人桌 > 四人桌 > 双人桌 - 根据剩余人数调整策略,如引用[3]提到:当$a_3>1$时,六人桌已满,需排空四人桌 3. **条件判断实现** 结合逻辑分支处理不同场景: ```python if a3 > 1: # 六人桌全被占 if b6 == 0: # 无空六人桌 # 排空四人桌的逻辑 elif a3 == 1 and a2 == 0: # 四人桌与六人桌等效处理 ``` --- ### **示例代码框架(模拟就餐安排)** ```python def arrange_students(students, tables): # tables格式示例:{"six": 3, "four": 2, "two": 5} remaining = students # 优先安排六人桌 while remaining >= 6 and tables["six"] > 0: remaining -= 6 tables["six"] -= 1 # 处理四人桌 while remaining >= 4 and tables["four"] > 0: remaining -= 4 tables["four"] -= 1 # 处理双人桌(可能需要组合) needed_two = (remaining + 1) // 2 # 向上取整 if tables["two"] >= needed_two: return True # 可安排 else: return False # 无法安排 ``` --- ### **真题拓展分析** 引用[3]中提到的条件$a_3>1$与$b_6$的关系,可能出现在以下场景: - **动态资源调整**:当六人桌全满时,需重新分配四人桌资源 - **冲突避免**:同一寝室学生需同时就餐,需保证餐桌连续可用性 --- ### **相关问题** 1. 如何优化食堂餐桌分配的算法以减少等待时间? 2. 如何处理多人桌与双人桌组合使用的场景? 3. 蓝桥杯真题中类似食堂问题的数学模型如何构建? --- 通过上述方法可系统化解决食堂类资源分配问题,重点在于条件分支的完整性资源利用的优先级设计[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值