【数据结构】AVL树

目录

一、AVL树的概念

二、AVL树的操作

1、AVL树的定义

2、插入

3、旋转

3.1、右单旋

3.2、左单旋

3.3、先左单旋再右单旋

3.4、先右单旋再左单旋

3.5、总结 

4、AVL树的验证

三、AVL树的性能


一、AVL树的概念

 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

 因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有 n 个结点,其高度可保持在 O(log n) ,搜索时间复杂度 O(log n) 。

二、AVL树的操作

1、AVL树的定义

template<class K, class V>
class AVLTreeNode
{
public:
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	int _bf; // balance

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

2、插入

 AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

 先按照二叉搜索树的规则将节点插入到AVL树中,新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性。

 cur 插入后, parent 的平衡因子一定需要调整。在插入之前, parent 的平衡因子分为三种情况:-1、0、1,分以下两种情况:

  1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可。
  2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可。

此时,parent的平衡因子可能有三种情况:0、正负1、正负2:

  1.  如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。
  2.  如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新。
  3.  如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理。

实现代码如下:

bool Insert(const pair<K, V>& kv)
{
    //1、插入新节点
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	//2、更新平衡因子
	while (parent)
	{
		if (cur == parent->_right)
		{
			parent->_bf++;
		}
		else
		{
			parent->_bf--;
		}
		if (parent->_bf == 1 || parent->_bf == -1)
		{
			//继续更新
			parent = parent->_parent;
			cur = cur->_parent;
		}
		else if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			//需要旋转
			//1、右右
			if (parent->_bf == 2 && cur->_bf == 1)
			{
				RotateL(parent);
			}
			//2、左左
			else if (parent->_bf == -2 && cur->_bf == -1)
			{
				RotateR(parent);
			}
			//3、左右
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RotateLR(parent);
			}
			//4、右左
			else if(parent->_bf == 2 && cur->_bf == -1)
			{
				RotateRL(parent);
			}
			else
			{
				assert(false);
			}
			break;
		}
		else
		{
			assert(false);
		}
	}
	return true;
}

3、旋转

3.1、右单旋

适用情况:新节点插入较高左子树的左侧---左左

 上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。

  • 旋转的原则:保持他继续是搜索树。
  • 旋转的目的:左右均衡,降低整棵树的高度。

 在旋转过程中,有以下几种情况需要考虑:

  1.  30节点的右孩子可能存在,也可能不存在。
  2.  60可能是根节点,也可能是子树。
     如果是根节点,旋转完成后,要更新根节点。
     如果是子树,可能是某个节点的左子树,也可能是右子树。

 实现代码:

void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)  //右孩子可能为空
		subLR->_parent = parent;

	Node* ppnode = parent->_parent; //记录父节点的父节点

	subL->_right = parent;
	parent->_parent = subL;

	if (ppnode == nullptr) //如果父节点是根节点
	{
		_root = subL;      //改变根节点
		_root->_parent = nullptr;
	}
	else                   //如果父节点不是根节点
	{
		if (ppnode->_left == parent) //如果父节点是左孩子
		{
			ppnode->_left = subL;    
		}
		else                         //如果父节点是右孩子
		{
			ppnode->_right = subL;
		}
		subL->_parent = ppnode;
	}
	parent->_bf = subL->_bf = 0;    //最后更新平衡因子
}

3.2、左单旋

适用情况:新节点插入较高右子树的右侧---右右

具体步骤与右单旋相同。

实现代码:

void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	Node* ppnode = parent->_parent;

	subR->_left = parent;
	parent->_parent = subR;

	if (ppnode == nullptr)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
		{
			ppnode->_left = subR;
		}
		else
		{
			ppnode->_right = subR;
		}
		subR->_parent = ppnode;
	}
	parent->_bf = subR->_bf = 0;
}

3.3、先左单旋再右单旋

适用情况:新节点插入较高左子树的右侧---左右

 将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。

 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整。

实现代码:

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	//旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
	//点的平衡因子
	int bf = subLR->_bf;

	RotateL(subL);
	RotateR(parent);

	if (bf == 1)
	{
		parent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

 需要注意的是,平衡因子的更新与新插入节点在较高左子树的右侧子树的左边还是右边有关。如果在右边,则影响 subL 的平衡因子。在左边,则影响 parent 的平衡因子。

3.4、先右单旋再左单旋

适用情况:新节点插入较高右子树的左侧---右左

 具体步骤与先左单旋再右单旋相同。

实现代码:

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	int bf = subRL->_bf;

	RotateR(subR);
	RotateL(parent);

	if (bf == 1)
	{
		parent->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == -1)
	{
		parent->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

3.5、总结 

假如以 parent 为根的子树不平衡,即 parent 的平衡因子为2或者-2,分以下情况考虑

  •  parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
    当subR的平衡因子为1时,执行左单旋
    当subR的平衡因子为-1时,执行右左双旋
  •  parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL
    当subL的平衡因子为-1是,执行右单旋
    当subL的平衡因子为1时,执行左右双旋

旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

4、AVL树的验证

提供一棵二叉树,如果需要判断该二叉树是否是平衡树,则可以使用如下代码:

int _Height(Node* root)
{
	if (root == NULL)
		return 0;
	int leftH = _Height(root->_left);
	int rightH = _Height(root->_right);

	return leftH > rightH ? leftH + 1 : rightH + 1;
}

bool _IsBalance(Node* root)
{
	if (root == NULL)
		return true;
	int leftH = _Height(root->_left);
	int rightH = _Height(root->_right);

	if (rightH - leftH != root->_bf)
	{
		cout << root->_kv.first << "节点平衡因子异常" << endl;
		return false;
	}

	return abs(leftH - rightH) < 2
		&& _IsBalance(root->_left)
		&& _IsBalance(root->_right);
}

bool IsBalance()
{
	return _IsBalance(_root);
}

需要注意的是,判断一棵树是否是平衡二叉树,不仅要判断整个二叉树,还需要判断所有的子树:

 在判断二叉树左右子树的高度的同时,检查每一个节点的平衡因子是否正确,为后面的操作扫清障碍。

 如果平衡因子出现异常,则可以使用以下代码判断是在插入哪一个节点时引发的异常:

 

 如果需要调试,就可以直接在循环中手动选择断点,进行调试:

三、AVL树的性能

 AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 log N

 但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


关于AVL树的相关内容就讲到这里,希望同学们多多支持,如果有不对的地方,欢迎大佬指正,谢谢!

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

世间是否此山最高

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值