基于tensorflow的深度学习案例
文章平均质量分 95
本专栏收集Tensorflow的入门案例,聚焦基础语法,如何搭建神经网络。
羊小猪~~
22级本科在读;探索C/C++,ai算法,go的世界;在迷茫中寻找“光芒”。
展开
-
tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
VGG优缺点分析:VGG优点VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。VGG缺点1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。后面优化也是基于VGG的缺点来进行。原创 2024-11-08 19:24:45 · 1131 阅读 · 0 评论 -
tensorflow案例4--人脸识别(损失函数选取,调用VGG16模型以及改进写法)
VGG16模型本次实验VGG16模型修改冻结前13层卷积,只修改全连接在全连接层前添加BN层、全局平均池化层,起到降维作用,因为VGG16的计算量很大全连接层中添加Dropout层修改后代码:# 导入官方VGG16模型# 冻结卷积权重# 获取卷积层输出# 添加BN层# 添加平均池化,降低计算量# 添加全连接层和Dropout# 创建模型结果最好结果,个人感觉想要继续提升精度,最简单方法,是结合ResNet网络, 这个后面我再试一下.# 定义输入张量。原创 2024-11-01 21:39:11 · 749 阅读 · 0 评论 -
tensorflow案例3--运动鞋识别(学习tensorflow动态加载学习率、如何设置早停等方法)
在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。文件加中数据,分为训练集和测试集两个文件,每一个文件都有不同类别文件夹,文件夹以不同鞋为分类,即不同文件夹就是不同类别。: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。原创 2024-10-25 21:44:07 · 950 阅读 · 0 评论 -
tensorflow案例2--猴痘病识别,一道激活函数的bug
这个损失函数计算的是稀疏分类交叉熵损失,适用于标签为整数的情况(而不是 one-hot 编码)。这个损失函数计算的是二元交叉熵损失,它是衡量模型预测的概率分布与真实标签之间的差异的一种方式。是一种常用的损失函数,特别适用于多分类任务。就可以了:happy::happy::happy::happy:。😢😢😢😢,最后才发现激活函数用错了,激活函数换成处理多分类。,但是验证集没有,所以总的来说没有什么太大的变化,激活函数,但是,但是🔲,我没有改,输出层依然是。,作为激活函数,但是没有在修改输出层,原创 2024-10-18 21:45:36 · 1317 阅读 · 0 评论 -
tensorflow案例1--天气识别,包含(Tensorflow的检查是否GPU、图像数据加载与划分、拿取动态加载的数据、内存优化、神经网络构建、模型超参数设计、模型训练)API讲解
tensorflow如何检查是否GPU、图像数据加载与划分、拿取动态加载的数据、内存优化、神经网络构建、模型超参数设计、模型训练?????原创 2024-10-11 20:10:23 · 952 阅读 · 0 评论 -
tensorflow快速入门--如何定义张量、定义网络结构、超参数设置、模型训练???
tensorflow如何定义张量、定义网络结构、超参数设置、模型训练呢????原创 2024-10-08 20:05:50 · 1365 阅读 · 0 评论