代码随想录刷题第27天

继续回溯。今天第一题是组合总数https://leetcode.cn/problems/combination-sum/description/,直接用回溯算法的代码套路写出。由于重复元素可以选取,在递归时不必从当前元素的下一个进行递归。

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(int targetsum, int sum, vector<int>& candidates,
                      int startindex) {
        if (sum > targetsum)
            return;
        if (sum == targetsum) {
            result.push_back(path);
            return;
        } //终止条件
        for (int i = startindex; i < candidates.size(); i++) {
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(targetsum, sum, candidates, i); //递归
            sum -= candidates[i];
            path.pop_back();
        }
    }
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        backtracking(target, 0, candidates, 0);
        return result;
    }
};

该题的剪枝操作需要先将数组排序,发现当前层的sum与遍历元素和大于targetsum时,对于后序更大的元素就没必要遍历了。

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(int targetsum, int sum, vector<int>& candidates,
                      int startindex) {
        if (sum > targetsum)
            return;
        if (sum == targetsum) {
            result.push_back(path);
            return;
        } //终止条件
        for (int i = startindex;
             i < candidates.size() && sum + candidates[i] <= targetsum; i++) {//剪枝
            path.push_back(candidates[i]);
            sum += candidates[i];
            backtracking(targetsum, sum, candidates, i); //递归
            sum -= candidates[i];
            path.pop_back();
        }
    }
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        sort(candidates.begin(), candidates.end());//排序
        backtracking(target, 0, candidates, 0);
        return result;
    }
};

第二题是组合总数IIhttps://leetcode.cn/problems/combination-sum-ii/,第一遍写出的代码没有将最终的result数组去重,编译不通过。第二遍写出的代码虽然进行了去重,但仍没有通过,看了卡哥的视频才发现是去重去多了,错误进行了树枝去重而不是树层去重。used去重很巧妙。

class Solution {
public:
vector<vector<int>> result;
vector<int> path;
    void backtracking(int target, int sum, int startindex, vector<int>& candidates, vector<bool>& used){
        if (sum > target) return;
        if (sum == target){
            result.push_back(path);
            return;
        }
        for(int i = startindex; i < candidates.size(); i++){
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) continue;
            path.push_back(candidates[i]);
            sum += candidates[i];
            used[i] = true;
            backtracking(target, sum, i + 1, candidates,used);
            path.pop_back();
            sum -= candidates[i];
            used[i] = false;
        }
    }
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
    vector<bool> used (candidates.size(), false);
    sort(candidates.begin(), candidates.end());
    backtracking(target, 0, 0, candidates, used);
    return result;
    }
};

第三题是分割回文串https://leetcode.cn/problems/palindrome-partitioning/description/,这题确实第一次做没思路。看了卡哥讲解发现确实是一道难题,切割过程用组合方式模拟不好想,细节很多。代码还是与模板很契合的。

class Solution {
public:
vector<vector<string>> result;
vector<string> path;
    bool is(string& s, int startindex, int end){//判断回文串
        for (int i = startindex, j = end; i < j; i++, j--){
            if (s[i] != s[j]) return false;
        }
        return true;
    }
    void backtracking(string& s, int startindex){
        if (startindex >= s.size()){//终止条件即切割线位于串末尾
            result.push_back(path);
            return;
        }
        for(int i = startindex; i < s.size(); i++){
            if (is(s, startindex, i)){
                string str = s.substr(startindex, i - startindex + 1);
                path.push_back(str);
            }
            else continue;
            backtracking(s, i + 1);
            path.pop_back();
        }
    }
    vector<vector<string>> partition(string s) {
    backtracking(s, 0);
    return result;
    }
};

今天的题目总体难度并不大,主要还是对回溯代码思想的理解,重点在分割回文串这道题,该题细节较多,二刷时应注意。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值