​JVM 如何优化 31 * x 为 (x << 5) - x?​

前言:​

在 Java 的 hashCode() 计算中,经常会看到 31 * x 这样的乘法运算。JVM 会将其优化为更高效的位运算形式 (x << 5) - x,以提高计算速度。下面详细解释这一优化原理:


1. 为什么选择 31?​
  • 31 是一个质数,能减少哈希冲突(质数在取模运算时分布更均匀)。
  • ​31 的二进制形式是 11111**​(即 2⁵ - 1 = 31),这使得它特别适合用移位和减法优化。

2. 数学等价性

31 * x 可以拆解为:

31 * x = (32 - 1) * x = 32 * x - x

32 * x 在二进制中相当于 x 左移 5 位(因为 32 = 2⁵):

32 * x = x << 5

因此:

31 * x = (x << 5) - x

3. 为什么位运算更快?​
  • 乘法运算(*)​​:在 CPU 上可能需要多个时钟周期(通常为3~4个CPU周期),尤其是早期处理器。
  • 移位(<<)和减法(-)​​:是单周期指令(各需要一个周期,组合后仅需要2个周期),执行速度更快。

JVM(特别是 HotSpot)会在运行时自动将 31 * x 替换为 (x << 5) - x,从而提升 hashCode() 的计算效率。


4. 验证优化

可以通过查看 JVM 生成的汇编代码(使用 -XX:+PrintAssembly)来确认这一优化。例如:

public int hash31(int x) {
    return 31 * x;
}

JIT 编译器会将其优化为:

mov    eax, x      ; 加载 x 到寄存器
shl    eax, 5      ; x << 5
sub    eax, x      ; eax = eax - x

5. 其他类似优化

JVM 对某些固定乘数(如 3, 7, 15, 31, 63 等 2ⁿ -1 形式的数)会采用类似的优化:

  • 7 * x(x << 3) - x
  • 15 * x(x << 4) - x
  • 63 * x(x << 6) - x

但 ​31 是最常用的,因为它在哈希计算中平衡了性能和冲突率。


总结
  • 优化原理​:31 * x = (x << 5) - x,利用二进制特性转换为高效位运算。
  • 性能提升​:移位和减法比直接乘法更快,JVM 自动应用此优化。
  • 适用场景​:适用于 hashCode() 计算、字符串哈希等需要快速乘法的场景。

这种优化是 JVM 对常见模式的智能编译策略之一,开发者无需手动改写,直接使用 31 * x 即可获得最佳性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

意倾城

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值